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Introductory Example: Numerical Modelling of Trabecular Bones

Trabecluar Bone is the material microstructure of vertebral bodies.

Affected by osteoporosis by elderly humans.



3.79 millions osteoporotic fractures in Europe in 2000

Direct cost: 31.7 billion Euros.Goal: Reliable numerical simulation.

Numerical challenge: Model contains very different scales

Conventional Finite Elements need a huge number of degrees of freedom for
the fine scale resolution.

Accuracy requirements are moderate.



Linearized Elasticity

Find u € H}) (€2) such that

/QLa(u):s(v):/fou V’UEH})(Q),

where

e (u) is the symmetric strain tensor

e(u) := % (Vu+ (Vu)T)

ILe is the stress tensor

o =ILe =2ue + Atrace(e) Id.

The Lamé coefficients @, A have discontinuities at the trabeculae boundaries.



Boundary value problems with multiple scales

Goal: Flexible and adaptive modeling of problems with different scales such as:

e scales in the physical geometry

e scales in the data

e scales introduced by singular perturbations



von Mises stresses |

1

0

Oscillatory solution of a non-linear Helmholtz equation
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Diffusion problem in heterogeneous

media



Model Problems

a) Poisson-type scalar elliptic equations.

Q C R% : bounded Lipschitz domain with boundary I = 9%,
H = (%’)321 . disjoint inclusions in €,

v = ngl Ow; :skeleton of the inclusions,

a € L (): diffusion coefficients

Vw e H:al,=aw €Ryg




Bathymetry of the Baltic Sea
Baltic Sea Research Institute
YWarnemiinde 1995

edited by T. Seifert
data by B. Kayser
graphics by F. Tauber




Continuous Problem:
Find w € HF, () such that
/ (aVu,Vv) = / fo Vv € H}, ().
Q Q
Number of inclusions is huge and cannot be resolved by finite elements.

Goal: Define low-dimensional finite element spaces in a hierarchical way.



b) Stokes equation.

—Au +Vp =1
divu =
Boundary conditions:
Dirichlet: u=20 onlp
. L (u,n) =0 |
Slip conditions: { on — (0, on)n = 0 on lgjip

with the stress tensor o (u,p) = 2¢ (u) — pl.

Sobolev spaces for velocity:
Hp (Q):={uecH (Q):u=0 onlp},

H:Sl“p (Q) := {u c HY(Q): (u,n) =0 on anp}.



c) Highly indefinite Helmholtz equation.

Find w € H! (Q) such that

/Q(<Vu,w>—k2m)+ik aﬂu@z/ﬂf@ vo € H(Q).

The solutions become highly oscillatory for large wave numbers & > kg > 0.



Composite Finite Elements

Concept:

a. Introduce dependent nodes in vicinity of critical regions, i.e., boundary of
the domain and/or of the inclusions.

b. Define the values in the dependent nodes via a suitable extrapolation
operator which reflects the characteristic behavior of the solution.

c. The number and location of the dependent nodes are determined via an

a-posteriori error estimator.



Construction of Two-Scale Discretization |

e Gyr: Overlapping finite element mesh determining the degrees of freedoms.
The mesh width H is related to the desired accuracy.

® Gp p: Finite element mesh which arises by refining recursively all simplices
which overlap the boundary of the domain and/or the inclusions. The mesh
width which characterizes the boundary resolution is h.

o Q;I{e’% C G p: Simplices which are generated by the boundary resolution.

o g}'{% = QH’h\Q%e’%: Simplices which have a proper distance to the
boundary.



Construction of Two-Scale Discretization |l

©p 5, ¢ Total set of nodal points in the two-scale mesh Gy,

@OII;,% : Set of dependent nodes in the vicinity of the critical regions.

@C}f‘;l . Set of degrees of freedom.

For x € @C};%, let ' denote a nearest point on the boundary/interface and

let A, denote a nearest simplex in Qldqo‘;l.



Construction of Composite Finite Element Spaces:

a) Poisson-type problem with Neumann boundary conditions

Space of standard finite elements at proper distance to the boundary/interface
is defined by

QdOf = int U T

5968, = {u € 00 (QdOf) |V € GiPt ul, € Py}



Extrapolation Operator:

dof
Let u € SH,h'

e For nodal points © € ©p j, the extrapolation operator is given by

u (x) T € @%}),1;1’

dep

Ev @) =1, e ot

where up  is the affine extension of the restriction u|p  to R

e For x € Q, the extrapolation operator is the piecewise affine interpolation
of the nodal values

Enu = (Zu)|q, where u := ((Enu) (w))meeH’h.



The space of composite finite elements is given by, locally, extending standard
finite element functions from the interior to a near-boundary zone

. dof
Spp = EnSHE.

The basis functions are
e as for standard finite elements in the interior
e “smeared” from the interior to the boundary in a near-boundary zone.

e The system matrix is assembled by standard finite element technology while
the supports of the modified basis functions are slightly increased leading
to a slightly increased sparsity pattern.



b) Poisson-type problem with Dirichlet boundary conditions

The concept for the construction is as for the natural boundary conditions while
the definition extrapolation operator employs a suitable weight.

e For nodal points x € ©pg j, the extrapolation operator is given by

u (x) T € @%}’fh,

d
up, () —up, (:Ur> T € @He,[;z'

(Epu) (z) = {

e For x € Q, the extrapolation operator is the piecewise affine interpolation
of the nodal values

Epu := (Zu)lq, where u := ((Epu) (m))CUE@H,h'



c) Poisson-type problem with discontinuous coefficients

Let v denote the interfaces between the inclusions. For a dependent node
T € @C};%, let 7 € ~ denote a nearest interface point and let Al , AL! denote

nearest simplices on each side of the interface. We define
(umpte) () = (Exu) (2) = (Enu) (27) + 7,
|

where ¢! el satisfy

upl (27) — o = uan (V) — = &7
alOn,u! (27) = al'op, ol (27)




If nearest simplices Al All on different sides of v do not exist because the
inclusions are too small, the construction can be generalized to a multiscale

agglomeration approach (work in progress).

If there is a huge number of small holes as in porous media the definition of
the values in the dependent points should be done by solving local problems in

a hierarchical way (see S., Warnke)
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Basis for Neumann bc Basis for Dirichlet bc

Basis for problems with discontinuous coefficients



d) Lamé Equations for Problems in Linear Elasticity

The extension operator for problems in elasticity with mixed boundary
conditions is defined as the componentwise application of the (previous)
extension operators for Poisson-type problems.



e) Stokes Problem

d
We consider the mini-element (SLO D B> X (51,0 N L% (Q)) The linear
d :
part of the velocity field u & (5170 b B) is denoted by ulin

Dirichlet boundary conditions: The extension operator £&p is applied
componentwise to the linear part of u to define values of the velocity in the
dependent nodes.

Slip boundary conditions: The normal component is extended as in the case
of Dirichlet boundary conditions while the tangential part is extended as for
Neumann boundary conditions

( ) (2) — u () T € @dOf
oo (Enu) (@) = (Enu(@))y(yry + (Epu(@))n(,ry @ € @"e"



A Priori Analysis for Problems in Linear Elasticity

The composite finite element space for Dirichlet boundary conditions is non-
conforming S¢FE ¢ H}) (Q2).

Theorem 1. [Rech, Smolianski, S., NuMath] Let h ~ H3/2. Then, the
bilinearform a (-,-) is coercive on SCFE H}) (Q2), ie., there exists v > 0
such that

a (u,u) >~ ||u||§11(9) vu € SCFE.

In particular, the Galerkin discretization has a unique solution.



Theorem 2. Letu € H} ()N H$(Q), 0 < s < 1. Suppose that the
following conditions are satisfied

TN < Chr VT € Gy

and h < H3/2. Then, the Galerkin solution ug € SCFE exists and fulfills for
sufficiently small H

1 -
Jw — uSHm,Q <CcH e ||u||H1+8(Q) ;
form = 0,1 and C' is independent of H and h.

Proof. M. Rech, thesis, 2006 and Rech, Smolianski, S., NuMath, 2006.



A Posteriori Error Estimation

The accuracy in the approximation of the Dirichlet boundary conditions can be
controlled by an a-posteriori error estimator which takes into account the effect
of approximate Dirichlet boundary conditions.

The error estimator consists of three terms. For any v € H1 (Q), we set

md(v) = inf a(v—70,0—7),
eHL ()

m3 (v,y") = [ (e(0) =L7y") 1 (Le (v) = ),

m% (v*) == [ldivy* + fll12q)-



Theorem 3. The error of the nonconforming approximation v € SCFE of the
exact solution w can be estimated by

a(u—v,u— v)1/2 < 2mg (v)+mgq (v, y*)+Caom (y*) Vy* € H (Q,div),

(1)

where C'q is the constant in Friedrichs’ inequality for the domain €2, i.e.,

Co:=  sup lwllza)
wenL@\{o} IV@lir2q)



Numerical Experiments

Convergence Rates for the Galerkin Solution

Q= (-1, 1)2 with a non-aligned rotated overlapping mesh.

level | dof | error one-scale CFE 67;7;37;&6(2)1) error two-scale CFE 6’];};3’];(5(;)1)
3 162 0.34297 0.24245
4 334 0.18394 1.865 0.12183 1.990
5 3738 0.12994 1.416 0.05171 2.356
§) 15786 0.09284 1.340 0.02155 2.340
7 064626 0.06402 1.450 0.00897 2.402




A-Posteriori Error Estimators

Effectivity Index

estimated energy error

eff =
energy error
level | dof | energy error error(t=1) | octimated error effectivity index
error({)
3 243 0.234 1.345 5.74
4 1251 0.110 2.127 0.692 6.23
5 5607 0.0486 2.263 0.406 8.36
6 | 23679 0.0165 2.945 0.173 10.46




Analysis for Stokes Flow

Find (u,p) € Hf () x L3 (Q) such that

a(u,v)+b(v,p) = (f,v)

b(u, q) 0 v (v,p) € H} (Q) x L3 (Q),

where

a(u,v) ::2/Q€(u):s(v) and b(v,q) := —/quivv.



Finite element approximation

Find (u,p) € Xg X M such that

a(u,v)+b(v,p) = (f,Vv)

b(u,q) 0 V(Vap)EXHXMHa

where (X g7, M) is the classical mini-element space, i.e.,
X7 pw. linear functions enriched by cubic bubble functions

M. continuous, pw linear functions with integral mean zero.



Classical Convergence Results

e Coercivity: Vu,v € Xy a(u,u) > « ||u||%{1(ﬂ),
e Stability:

inf sup -
vpeXy\{0} HVHHHl(Q) ||pHHL2(Q)

pgEMpy

e Regularity: (u,p) € H*" (Q) x H" (Q) for some 0 < r < 2.

Then: |ju — U—HHHl(Q) + |lp — pH||L2(Q) < CyfH'".



For complicated domains, composite finite elements violate the boundary

conditions.

This leads to a non-conforming method:

Xy x My ¢ H}(Q) x L3(Q) but Xy x My c H (Q) x L?(Q).

||VH||L2 o0
Then: [lu — upllg oy Hip — pall o) < Cr [ B+ sup U
veXy\{0} HVHHHl(Q)



Model Problem: Domain which contains small holes.




Most Naive Approach: Holes are neglected (due to limited computer capacity)
and a quasi-uniform mesh is employed.

Left-top: Quasi-uniform mesh. Right-top: Absolute velocity error.

Left bottom: Numerical solution on quasi-uniform mesh. Right-bottom: Exact solution



Resolving the holes by an adaptive mesh requires 8 — 10 times more nodal
points.
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Left-top: Resolving adaptive mesh. Right-top: Absolute velocity error.

Left bottom: Numerical solution on resolving mesh. Right-bottom: Exact solution



Composite Mini Element. (Number of unknowns is comparable as for quasi-

uniform mesh)

Ity error.

Absolute veloc

CME mesh. Right-top:

Left-top

ion

Exact solut

Numerical solution on CME mesh. Right-bottom:

Left bottom



Convergence Results:

Theorem 4. [Stability, Peterseim/S. SIAM J. Numer. Anal.] The composite
mini element space satisfies the inf-sup-condition

b
inf sup (u,p) > 3 > 0.

peMENE\(0} uex§ME (o} 1Pl L2() IllE(a)

Theorem 5. [Approximation Property, Peterseim/S. SIAM J. Numer. Anal.]
The composite mini element space satisfies the standard approximation property
already on the non-resolved scales.

inf _[[u—vllgg)+ inf Hp—QHL2(Q)SH(HUHHZ(Q)JFHpHHl(Q))'

CME CME
VEXH’h EMH,h



Theorem 6. The discretization with the composite mini element has a unique
solution (uH,h7 pH,h> :

If (u,p) € HIT" (Q) x H" (Q) for some r € ]%, 1] then

Hu B uH>hHH1(Q) T Hp B pH’hHL2(Q) S (H + poc (H b)) [[Ellgr-1(0) »

with the measure of non-conformity

VHah 2 d "
pnc (H, h) := sup ’ ’L (%) <+VH Yodof ©— elove d-lam .

tNOQAD

If the small and coarse scales h and H satisfy h ~ H™1/2 the asymptotic
convergence rates already hold on the coarse scales.




