

Institut für Mathematik Universität Zürich

computational mathematics

Composite Finite Elements

Stefan A. Sauter

Introductory Example: Numerical Modelling of Trabecular Bones

Trabecluar Bone is the material microstructure of vertebral bodies.

Affected by osteoporosis by elderly humans.

3.79 millions osteoporotic fractures in Europe in 2000

Direct cost: 31.7 billion Euros.Goal: Reliable numerical simulation. Numerical challenge: Model contains very different scales Conventional Finite Elements need a huge number of degrees of freedom for the fine scale resolution.

Accuracy requirements are moderate.

Linearized Elasticity

Find $u \in \mathbf{H}_{D}^{1}(\Omega)$ such that

$$\int_{\Omega} \mathbb{L}\varepsilon(u) : \varepsilon(v) = \int_{\Omega} fv \qquad \forall v \in \mathbf{H}_{D}^{1}(\Omega),$$

where

 $\varepsilon(u)$ is the symmetric strain tensor

$$\varepsilon(u) := \frac{1}{2} (\nabla u + (\nabla u)^{\mathsf{T}})$$

 $\mathbb{L}\varepsilon$ is the stress tensor

$$\sigma = \mathbb{L}\varepsilon = 2\mu\varepsilon + \lambda \operatorname{trace}(\varepsilon) \operatorname{Id}$$
.

The Lamé coefficients μ , λ have discontinuities at the trabeculae boundaries.

Boundary value problems with multiple scales

Goal: Flexible and adaptive modeling of problems with different scales such as:

- scales in the physical geometry
- scales in the data
- scales introduced by singular perturbations

von Mises stresses in porcine trabecular bone

Diffusion problem in heterogeneous media

Oscillatory solution of a non-linear Helmholtz equation

Model Problems

a) Poisson-type scalar elliptic equations.

 $\Omega \subset \mathbb{R}^d$: bounded Lipschitz domain with boundary $\Gamma = \partial \Omega$,

 $\mathcal{H}=(\omega_i)_{i=1}^q$: disjoint inclusions in Ω ,

 $\gamma = igcup_{i=1}^q \partial \omega_i$:skeleton of the inclusions,

 $a \in L^{\infty}(\Omega)$: diffusion coefficients $orall \omega \in \mathcal{H}: a|_{\omega} = a_{\omega} \in \mathbb{R}_{>0}$

Continuous Problem:

Find $u \in H^1_D(\Omega)$ such that

$$\int_{\Omega} \langle a \nabla u, \nabla v \rangle = \int_{\Omega} f v \qquad \forall v \in H_D^1(\Omega) \,.$$

Number of inclusions is huge and cannot be resolved by finite elements.

Goal: Define low-dimensional finite element spaces in a hierarchical way.

b) Stokes equation.

$$\begin{array}{rl} -\Delta \mathbf{u} & +\nabla p &= \mathbf{f} \\ \operatorname{div} \mathbf{u} & &= \mathbf{0} \end{array}$$

Boundary conditions:

with the stress tensor $\sigma(\mathbf{u},p) = 2\varepsilon(\mathbf{u}) - p\mathbf{I}$.

Sobolev spaces for velocity:

$$\mathbf{H}_{D}^{1}\left(\Omega
ight) := \left\{ \mathbf{u} \in \mathbf{H}^{1}\left(\Omega
ight) : \mathbf{u} = \mathbf{0} \quad \text{ on } \mathsf{\Gamma}_{D}
ight\},$$

 $\mathbf{H}_{\mathsf{slip}}^{1}\left(\Omega
ight) := \left\{ \mathbf{u} \in \mathbf{H}^{1}\left(\Omega
ight) : \langle \mathbf{u}, \mathbf{n}
angle = \mathbf{0} \quad \text{ on } \mathsf{\Gamma}_{\mathsf{slip}}
ight\}.$

c) Highly indefinite Helmholtz equation.

Find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \left(\langle \nabla u, \nabla \overline{v} \rangle - k^2 u \overline{v} \right) + \mathsf{i} \, k \int_{\partial \Omega} u \overline{v} = \int_{\Omega} f \overline{v} \qquad \forall v \in H^1(\Omega) \,.$$

The solutions become highly oscillatory for large wave numbers $k \ge k_0 > 0$.

Composite Finite Elements

Concept:

- a. Introduce *dependent* nodes in vicinity of critical regions, i.e., boundary of the domain and/or of the inclusions.
- b. Define the values in the *dependent* nodes via a suitable extrapolation operator which reflects the characteristic behavior of the solution.
- c. The number and location of the *dependent* nodes are determined via an a-posteriori error estimator.

Construction of Two-Scale Discretization I

- \mathcal{G}_H : Overlapping finite element mesh determining the degrees of freedoms. The mesh width H is related to the desired accuracy.
- $\mathcal{G}_{H,h}$: Finite element mesh which arises by refining recursively all simplices which overlap the boundary of the domain and/or the inclusions. The mesh width which characterizes the boundary resolution is h.
- $\mathcal{G}_{H,h}^{dep} \subset \mathcal{G}_{H,h}$: Simplices which are generated by the boundary resolution.
- $\mathcal{G}_{H,h}^{dof} := \mathcal{G}_{H,h} \setminus \mathcal{G}_{H,h}^{dep}$: Simplices which have a proper distance to the boundary.

Construction of Two-Scale Discretization II

 $\Theta_{H,h}$: Total set of nodal points in the two-scale mesh $\mathcal{G}_{H,h}$

 $\Theta_{H,h}^{dep}$: Set of *dependent* nodes in the vicinity of the critical regions.

 $\Theta_{H,h}^{\mathsf{dof}}$: Set of degrees of freedom.

For $x \in \Theta_{H,h}^{dep}$, let x^{Γ} denote a nearest point on the boundary/interface and let Δ_x denote a nearest simplex in $\mathcal{G}_{H,h}^{dof}$.

Construction of Composite Finite Element Spaces:

a) Poisson-type problem with Neumann boundary conditions

Space of standard finite elements at proper distance to the boundary/interface is defined by

$$\begin{split} \Omega^{\mathsf{dof}}_{H,h} &:= \mathsf{int} \bigcup_{\tau \in \mathcal{G}^{\mathsf{dof}}_{H,h}} \tau. \\ S^{\mathsf{dof}}_{H,h} &:= \left\{ u \in C^{\mathsf{0}}\left(\Omega^{\mathsf{dof}}_{H,h}\right) \mid \forall \tau \in \mathcal{G}^{\mathsf{dof}}_{H,h} : u|_{\tau} \in \mathbb{P}_{1} \right\}. \end{split}$$

Extrapolation Operator:

Let $u \in S_{H,h}^{\mathsf{dof}}$.

• For nodal points $x\in \Theta_{H,h}$, the extrapolation operator is given by

$$\left(\mathcal{E}_{N}u
ight)\left(x
ight):=\left\{egin{array}{ll} u\left(x
ight) & x\in\Theta_{H,h}^{\mathsf{dof}},\ u_{\Delta_{x}}\left(x
ight) & x\in\Theta_{H,h}^{\mathsf{dep}}, \end{array}
ight.$$

where $u_{\Delta x}$ is the affine extension of the restriction $u|_{\Delta x}$ to \mathbb{R}^d .

 For x ∈ Ω, the extrapolation operator is the piecewise affine interpolation of the nodal values

$$\mathcal{E}_N u := (\mathcal{I}\mathbf{u})|_{\Omega}, \quad \text{where } \mathbf{u} := ((\mathcal{E}_N u)(x))_{x \in \Theta_{H,h}}$$

The space of composite finite elements is given by, locally, extending standard finite element functions from the interior to a near-boundary zone

$$S_{H,h} := \mathcal{E}_N S_{H,h}^{\mathsf{dof}}.$$

The basis functions are

- as for standard finite elements in the interior
- "smeared" from the interior to the boundary in a near-boundary zone.
- The system matrix is assembled by standard finite element technology while the supports of the modified basis functions are slightly increased leading to a slightly increased sparsity pattern.

b) Poisson-type problem with Dirichlet boundary conditions

The concept for the construction is as for the natural boundary conditions while the definition extrapolation operator employs a suitable weight.

• For nodal points $x \in \Theta_{H,h}$, the extrapolation operator is given by

$$\left(\mathcal{E}_{D}u\right)(x) := \begin{cases} u(x) & x \in \Theta_{H,h}^{\mathsf{dof}}, \\ u_{\Delta_{x}}(x) - u_{\Delta_{x}}\left(x^{\mathsf{\Gamma}}\right) & x \in \Theta_{H,h}^{\mathsf{dep}}. \end{cases}$$

• For $x \in \Omega$, the extrapolation operator is the piecewise affine interpolation of the nodal values

$$\mathcal{E}_D u := (\mathcal{I}\mathbf{u})|_{\Omega}, \quad \text{where } \mathbf{u} := ((\mathcal{E}_D u)(x))_{x \in \Theta_{H,h}}.$$

c) Poisson-type problem with discontinuous coefficients

Let γ denote the interfaces between the inclusions. For a dependent node $x \in \Theta_{H,h}^{dep}$, let $x^{\gamma} \in \gamma$ denote a nearest interface point and let Δ_x^{I} , Δ_x^{II} denote nearest simplices on each side of the interface. We define

$$\left(\mathcal{E}_{\mathsf{jump}}u
ight)(x):=\left(\mathcal{E}_{N}u
ight)(x)-\left(\mathcal{E}_{N}u
ight)(x^{\gamma})+c^{\gamma},$$

where $c_x^{\rm I},\,c_x^{\rm II}$ satisfy

If nearest simplices Δ_x^{I} , Δ_x^{II} on different sides of γ do **not** exist because the inclusions are **too** small, the construction can be generalized to a multiscale agglomeration approach (work in progress).

If there is a huge number of small holes as in porous media the definition of the values in the dependent points should be done by solving local problems in a hierarchical way (see S., Warnke)

Basis for Neumann bc

Basis for Dirichlet bc

Basis for problems with discontinuous coefficients

d) Lamé Equations for Problems in Linear Elasticity

The extension operator for problems in elasticity with *mixed boundary conditions* is defined as the componentwise application of the (previous) extension operators for Poisson-type problems.

e) <u>Stokes Problem</u>

We consider the mini-element $(S^{1,0} \oplus B)^d \times (S^{1,0} \cap L^2_0(\Omega))$. The linear part of the velocity field $\mathbf{u} \in (S^{1,0} \oplus B)^d$ is denoted by \mathbf{u}^{lin} .

Dirichlet boundary conditions: The extension operator \mathcal{E}_D is applied componentwise to the linear part of **u** to define values of the velocity in the dependent nodes.

Slip boundary conditions: The normal component is extended as in the case of Dirichlet boundary conditions while the tangential part is extended as for Neumann boundary conditions

$$\left(\mathcal{E}_{\mathsf{slip}} \mathbf{u} \right) (x) := \begin{cases} \mathbf{u} (x) & x \in \Theta_{H,h}^{\mathsf{dof}} \\ (\mathcal{E}_N \mathbf{u}) (x) - (\mathcal{E}_N \mathbf{u} (x))_{\mathbf{n} \left(x^{\Gamma} \right)} + (\mathcal{E}_D \mathbf{u} (x))_{\mathbf{n} \left(x^{\Gamma} \right)} & x \in \Theta_{H,h}^{\mathsf{dep}}. \end{cases}$$

A Priori Analysis for Problems in Linear Elasticity

The composite finite element space for Dirichlet boundary conditions is nonconforming $\mathbf{S}^{CFE} \not\subset \mathbf{H}_D^1(\Omega)$.

Theorem 1. [Rech, Smolianski, S., NuMath] Let $h \sim H^{3/2}$. Then, the bilinearform $a(\cdot, \cdot)$ is coercive on $\mathbf{S}^{CFE} \subset \mathbf{H}_D^1(\Omega)$, i.e., there exists $\gamma > 0$ such that

$$a(u, u) \ge \gamma ||u||_{H^1(\Omega)}^2 \qquad \forall u \in \mathbf{S}^{\mathsf{CFE}}.$$

In particular, the Galerkin discretization has a unique solution.

Theorem 2. Let $u \in H^1_D(\Omega) \cap H^{1+s}(\Omega)$, $0 \le s \le 1$. Suppose that the following conditions are satisfied

$$|\tau \cap \mathsf{\Gamma}| \le Ch_{\tau} \qquad \forall \tau \in \mathcal{G}_H$$

and $h \leq H^{3/2}$. Then, the Galerkin solution $u_S \in \mathbf{S}^{\mathsf{CFE}}$ exists and fulfills for sufficiently small H

$$||u - u_S||_{m,\Omega} \le CH^{1+s-m} ||u||_{H^{1+s}(\Omega)},$$

for m = 0, 1 and C is independent of H and h.

Proof. M. Rech, thesis, 2006 and Rech, Smolianski, S., NuMath, 2006.

A Posteriori Error Estimation

The accuracy in the *approximation* of the Dirichlet boundary conditions can be controlled by an a-posteriori error estimator which takes into account the effect of approximate Dirichlet boundary conditions.

The error estimator consists of three terms. For any $v \in H^1(\Omega)$, we set

$$egin{aligned} &m_0^2\left(v
ight) \coloneqq \inf_{ ilde{v}\in H_D^1(\Omega)} a\left(v- ilde{v},v- ilde{v}
ight), \ &m_d^2\left(v,y^\star
ight) \coloneqq \int_\Omega \left(arepsilon\left(v
ight)-\mathbb{L}^{-1}y^\star
ight) arepsilon\left(\mathbb{L}arepsilon\left(v
ight)-y^\star
ight), \ &m_f^2\left(y^\star
ight) \coloneqq \| ext{div}\,y^\star+f\|_{L^2(\Omega)}. \end{aligned}$$

Theorem 3. The error of the nonconforming approximation $v \in \mathbf{S}^{CFE}$ of the exact solution u can be estimated by

$$a (u - v, u - v)^{1/2} \le 2m_0 (v) + m_d (v, y^*) + C_\Omega m_f (y^*) \qquad \forall y^* \in H(\Omega, \operatorname{div}),$$
(1)

where C_{Ω} is the constant in Friedrichs' inequality for the domain Ω , i.e.,

$$C_{\Omega} := \sup_{w \in H^1_D(\Omega) \setminus \{0\}} \frac{\|w\|_{L^2(\Omega)}}{\|\nabla w\|_{L^2(\Omega)}}.$$

Numerical Experiments

Convergence Rates for the Galerkin Solution

 $\Omega = (-1,1)^2$ with a non-aligned rotated overlapping mesh.

level	dof	error one-scale CFE	$rac{error(\ell{-}1)}{error(\ell)}$	error two-scale CFE	$rac{error(\ell-1)}{error(\ell)}$
3	162	0.34297		0.24245	
4	834	0.18394	1.865	0.12183	1.990
5	3738	0.12994	1.416	0.05171	2.356
6	15786	0.09284	1.340	0.02155	2.340
7	64626	0.06402	1.450	0.00897	2.402

A-Posteriori Error Estimators

Effectivity Index

$$eff := \frac{\text{estimated energy error}}{\text{energy error}}.$$

level	dof	energy error	$\left rac{error(\ell - 1)}{error(\ell)} ight $	estimated error	effectivity index
3	243	0.234		1.345	5.74
4	1251	0.110	2.127	0.692	6.23
5	5607	0.0486	2.263	0.406	8.36
6	23679	0.0165	2.945	0.173	10.46

Analysis for Stokes Flow

Find $(\mathbf{u},p)\in\mathbf{H}_{0}^{1}\left(\Omega
ight) imes L_{0}^{2}\left(\Omega
ight)$ such that

$$\begin{array}{rcl} a\left(\mathbf{u},\mathbf{v}\right)+b\left(\mathbf{v},p\right) &=& \left(\mathbf{f},\mathbf{v}\right) \\ b\left(\mathbf{u},q\right) &=& \mathbf{0} \end{array} \quad \forall \left(\mathbf{v},p\right) \in \mathbf{H}_{0}^{1}\left(\Omega\right) \times L_{0}^{2}\left(\Omega\right), \end{array}$$

where

Finite element approximation

Find $(\mathbf{u}, p) \in \mathbf{X}_H \times M_H$ such that

$$\begin{array}{rcl} a\left(\mathbf{u},\mathbf{v}\right)+b\left(\mathbf{v},p\right) &=& \left(\mathbf{f},\mathbf{v}\right) \\ b\left(\mathbf{u},q\right) &=& \mathbf{0} \end{array} \quad \forall \left(\mathbf{v},p\right) \in \mathbf{X}_{H} \times M_{H}, \end{array}$$

where (\mathbf{X}_H, M_H) is the classical mini-element space, i.e.,

 X_H : pw. linear functions enriched by cubic bubble functions

 M_H : continuous, pw linear functions with integral mean zero.

Classical Convergence Results

- Coercivity: $\forall \mathbf{u}, \mathbf{v} \in \mathbf{X}_H$ $a(\mathbf{u}, \mathbf{u}) \geq \alpha \|\mathbf{u}\|_{\mathbf{H}^1(\Omega)}^2$
- Stability:

$$\inf_{p_{H}\in M_{H}}\sup_{\mathbf{v}_{H}\in\mathbf{X}_{H}\setminus\{0\}}\frac{b\left(\mathbf{v}_{H},p_{H}\right)}{\|\mathbf{v}_{H}\|_{\mathbf{H}^{1}(\Omega)}\|p_{H}\|_{L^{2}(\Omega)}}\geq\beta>0.$$

• Regularity: $(\mathbf{u}, p) \in \mathbf{H}^{1+r}(\Omega) \times \mathbf{H}^{r}(\Omega)$ for some $0 < r \leq 2$.

Then:
$$\|\mathbf{u} - \mathbf{u}_H\|_{\mathbf{H}^1(\Omega)} + \|p - p_H\|_{L^2(\Omega)} \le C_{\mathbf{f}} H^r$$
.

For complicated domains, composite finite elements violate the boundary conditions.

This leads to a *non-conforming method*:

 $\mathbf{X}_H \times \mathbf{M}_H \subsetneq \mathbf{H}_0^1(\Omega) \times L_0^2(\Omega)$ but $\mathbf{X}_H \times \mathbf{M}_H \subset \mathbf{H}^1(\Omega) \times L^2(\Omega)$.

Then: $\|\mathbf{u} - \mathbf{u}_H\|_{\mathbf{H}^1(\Omega)} + \|p - p_H\|_{L^2(\Omega)} \le C_{\mathbf{f}} \left(H^r + \sup_{\mathbf{v}_H \in \mathbf{X}_H \setminus \{0\}} \frac{\|\mathbf{v}_H\|_{\mathbf{L}^2(\partial\Omega)}}{\|\mathbf{v}_H\|_{\mathbf{H}^1(\Omega)}} \right).$

Model Problem: Domain which contains small holes.

Most Naive Approach: Holes are neglected (due to limited computer capacity) and a quasi-uniform mesh is employed.

Left-top: Quasi-uniform mesh. Right-top: Absolute velocity error.

Left bottom: Numerical solution on quasi-uniform mesh. Right-bottom: Exact solution

Resolving the holes by an adaptive mesh requires 8 - 10 times more nodal points.

Left-top: Resolving adaptive mesh. Right-top: Absolute velocity error. Left bottom: Numerical solution on resolving mesh. Right-bottom: Exact solution Composite Mini Element. (Number of unknowns is comparable as for quasiuniform mesh)

Left-top: CME mesh. Right-top: Absolute velocity error.

Left bottom: Numerical solution on CME mesh. Right-bottom: Exact solution

Convergence Results:

Theorem 4. [Stability, Peterseim/S. SIAM J. Numer. Anal.] The composite mini element space satisfies the inf-sup-condition

 $\inf_{p \in M_{H,h}^{\mathsf{CME}} \setminus \{0\}} \sup_{\mathbf{u} \in \mathbf{X}_{H,h}^{\mathsf{CME}} \setminus \{0\}} \frac{b(\mathbf{u}, p)}{\|p\|_{L^{2}(\Omega)} \|\mathbf{u}\|_{\mathbf{H}^{1}(\Omega)}} \geq \beta > 0.$

Theorem 5. [Approximation Property, Peterseim/S. SIAM J. Numer. Anal.] The composite mini element space satisfies the standard approximation property already on the non-resolved scales.

$$\inf_{\mathbf{v}\in\mathbf{X}_{H,h}^{\mathsf{CME}}} \|\mathbf{u}-\mathbf{v}\|_{\mathbf{H}^{1}(\Omega)} + \inf_{q\in M_{H,h}^{\mathsf{CME}}} \|p-q\|_{L^{2}(\Omega)} \lesssim H\left(\|\mathbf{u}\|_{\mathbf{H}^{2}(\Omega)} + \|p\|_{H^{1}(\Omega)}\right).$$

Theorem 6. The discretization with the composite mini element has a unique solution $(\mathbf{u}_{H,h}, p_{H,h})$.

If
$$(\mathbf{u}, p) \in \mathbf{H}^{1+r}(\Omega) \times H^r(\Omega)$$
 for some $r \in \left]\frac{1}{2}, 1\right]$ then
 $\left\|\mathbf{u} - \mathbf{u}_{H,h}\right\|_{\mathbf{H}^1(\Omega)} + \left\|p - p_{H,h}\right\|_{L^2(\Omega)} \lesssim (H^r + \rho_{\mathsf{nc}}(H,h)) \left\|\mathbf{f}\right\|_{\mathbf{H}^{r-1}(\Omega)},$

with the measure of non-conformity

$$\rho_{\mathsf{nc}}(H,h) := \sup_{\mathbf{v}_{H,h} \in \mathbf{X}_{H,h}^{\mathsf{CME}} \setminus \{\mathbf{0}\}} \frac{\left\| \mathbf{v}_{H,h} \right\|_{L^{2}(\partial \Omega)}}{\left\| \mathbf{v}_{H,h} \right\|_{H^{1}(\Omega)}} \lesssim \sqrt{H} \max_{\substack{\tau \in \mathcal{G}^{\mathsf{dof}} \ t \in \mathcal{G}^{\mathsf{slave}}(\tau) \\ t \cap \partial \Omega \neq \emptyset}} \frac{\mathsf{diam} t}{\mathsf{diam} \tau}.$$

If the small and coarse scales h and H satisfy $h \sim H^{r+1/2}$, the asymptotic convergence rates **already** hold on the coarse scales.