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Introductory Example: Numerical Modelling of Trabecular Bones

Trabecluar Bone is the material microstructure of vertebral bodies.

A¤ected by osteoporosis by elderly humans.



3.79 millions osteoporotic fractures in Europe in 2000

Direct cost: 31.7 billion Euros.Goal: Reliable numerical simulation.
Numerical challenge: Model contains very di¤erent scales
Conventional Finite Elements need a huge number of degrees of freedom for
the �ne scale resolution.
Accuracy requirements are moderate.



Linearized Elasticity

Find u 2 H1D (
) such thatZ


L" (u) : " (v) =

Z


fv 8v 2 H1D (
) ;

where

" (u) is the symmetric strain tensor

" (u) :=
1

2
(ru+ (ru)|)

L" is the stress tensor

� = L" = 2�"+ � trace (") Id :

The Lamé coe¢ cients �, � have discontinuities at the trabeculae boundaries.



Boundary value problems with multiple scales

Goal: Flexible and adaptive modeling of problems with di¤erent scales such as:

� scales in the physical geometry

� scales in the data

� scales introduced by singular perturbations



von Mises stresses in porcine trabecular bone Di¤usion problem in heterogeneous media
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Oscillatory solution of a non-linear Helmholtz equation



Model Problems

a) Poisson-type scalar elliptic equations.


 � Rd : bounded Lipschitz domain with boundary � = @
,

H = (!i)
q
i=1 : disjoint inclusions in 
,

 =
Sq
i=1 @!i :skeleton of the inclusions,

a 2 L1 (
): di¤usion coe¢ cients

8! 2 H : aj! = a! 2 R>0





Continuous Problem:

Find u 2 H1D (
) such thatZ


haru;rvi =

Z


fv 8v 2 H1D (
) :

Number of inclusions is huge and cannot be resolved by �nite elements.

Goal: De�ne low-dimensional �nite element spaces in a hierarchical way.



b) Stokes equation.

��u +rp = f
divu = 0

Boundary conditions:

Dirichlet: u = 0 on �D

Slip conditions:

(
hu;ni = 0
�n � hn; �nin = 0

)
on �slip

with the stress tensor � (u; p) = 2" (u)� pI:

Sobolev spaces for velocity:

H1D (
) :=
n
u 2 H1 (
) : u = 0 on �D

o
;

H1slip (
) :=
n
u 2 H1 (
) : hu;ni = 0 on �slip

o
:



c) Highly inde�nite Helmholtz equation.

Find u 2 H1 (
) such thatZ



�
hru;rvi � k2uv

�
+ i k

Z
@

uv =

Z


fv 8v 2 H1 (
) :

The solutions become highly oscillatory for large wave numbers k � k0 > 0.



Composite Finite Elements

Concept:

a. Introduce dependent nodes in vicinity of critical regions, i.e., boundary of
the domain and/or of the inclusions.

b. De�ne the values in the dependent nodes via a suitable extrapolation
operator which re�ects the characteristic behavior of the solution.

c. The number and location of the dependent nodes are determined via an
a-posteriori error estimator.



Construction of Two-Scale Discretization I

� GH : Overlapping �nite element mesh determining the degrees of freedoms.
The mesh width H is related to the desired accuracy.

� GH;h: Finite element mesh which arises by re�ning recursively all simplices
which overlap the boundary of the domain and/or the inclusions. The mesh
width which characterizes the boundary resolution is h.

� GdepH;h � GH;h: Simplices which are generated by the boundary resolution.

� GdofH;h := GH;hnG
dep
H;h: Simplices which have a proper distance to the

boundary.



Construction of Two-Scale Discretization II

�H;h : Total set of nodal points in the two-scale mesh GH;h

�
dep
H;h : Set of dependent nodes in the vicinity of the critical regions.

�dofH;h : Set of degrees of freedom.

For x 2 �depH;h, let x
� denote a nearest point on the boundary/interface and

let �x denote a nearest simplex in GdofH;h.



Construction of Composite Finite Element Spaces:

a) Poisson-type problem with Neumann boundary conditions

Space of standard �nite elements at proper distance to the boundary/interface
is de�ned by


dofH;h := int
[

�2GdofH;h

�:

SdofH;h :=
n
u 2 C0

�

dofH;h

�
j 8� 2 GdofH;h : uj� 2 P1

o
:



Extrapolation Operator:

Let u 2 SdofH;h:

� For nodal points x 2 �H;h, the extrapolation operator is given by

(ENu) (x) :=

8<: u (x) x 2 �dofH;h;
u�x (x) x 2 �depH;h;

where u�x is the a¢ ne extension of the restriction uj�x to R
d.

� For x 2 
, the extrapolation operator is the piecewise a¢ ne interpolation
of the nodal values

ENu := (Iu)j
 ; where u := ((ENu) (x))x2�H;h :



The space of composite �nite elements is given by, locally, extending standard
�nite element functions from the interior to a near-boundary zone

SH;h := ENSdofH;h:

The basis functions are

� as for standard �nite elements in the interior

� �smeared� from the interior to the boundary in a near-boundary zone.

� The system matrix is assembled by standard �nite element technology while
the supports of the modi�ed basis functions are slightly increased leading
to a slightly increased sparsity pattern.



b) Poisson-type problem with Dirichlet boundary conditions

The concept for the construction is as for the natural boundary conditions while
the de�nition extrapolation operator employs a suitable weight.

� For nodal points x 2 �H;h, the extrapolation operator is given by

(EDu) (x) :=

8<: u (x) x 2 �dofH;h;
u�x (x)� u�x

�
x�
�
x 2 �depH;h:

� For x 2 
, the extrapolation operator is the piecewise a¢ ne interpolation
of the nodal values

EDu := (Iu)j
 ; where u := ((EDu) (x))x2�H;h :



c) Poisson-type problem with discontinuous coe¢ cients

Let  denote the interfaces between the inclusions. For a dependent node
x 2 �depH;h, let x

 2  denote a nearest interface point and let �Ix , �IIx denote
nearest simplices on each side of the interface. We de�ne�

Ejumpu
�
(x) := (ENu) (x)� (ENu) (x) + c;

where cIx, c
II
x satisfy

u�Ix
(x)� cIx = u�IIx (x

)� cIIx =: c

aI@nxu
I (x) = aII@nxu

II (x)



If nearest simplices �Ix;�
II
x on di¤erent sides of  do not exist because the

inclusions are too small, the construction can be generalized to a multiscale
agglomeration approach (work in progress).

If there is a huge number of small holes as in porous media the de�nition of
the values in the dependent points should be done by solving local problems in
a hierarchical way (see S., Warnke)



Basis for Neumann bc Basis for Dirichlet bc

Basis for problems with discontinuous coe¢ cients



d) Lamé Equations for Problems in Linear Elasticity

The extension operator for problems in elasticity with mixed boundary
conditions is de�ned as the componentwise application of the (previous)
extension operators for Poisson-type problems.



e) Stokes Problem

We consider the mini-element
�
S1;0 �B

�d � �
S1;0 \ L20 (
)

�
. The linear

part of the velocity �eld u 2
�
S1;0 �B

�d
is denoted by ulin.

Dirichlet boundary conditions: The extension operator ED is applied
componentwise to the linear part of u to de�ne values of the velocity in the
dependent nodes.

Slip boundary conditions: The normal component is extended as in the case
of Dirichlet boundary conditions while the tangential part is extended as for
Neumann boundary conditions

�
Eslipu

�
(x) :=

8<: u (x) x 2 �dofH;h
(ENu) (x)� (ENu (x))n(x�) + (EDu (x))n(x�) x 2 �depH;h:



A Priori Analysis for Problems in Linear Elasticity

The composite �nite element space for Dirichlet boundary conditions is non-
conforming SCFE 6� H1D (
).

Theorem 1. [Rech, Smolianski, S., NuMath] Let h � H3=2. Then, the
bilinearform a (�; �) is coercive on SCFE � H1D (
), i.e., there exists  > 0

such that

a (u; u) �  kuk2H1(
) 8u 2 SCFE:

In particular, the Galerkin discretization has a unique solution.



Theorem 2. Let u 2 H1D (
) \ H
1+s (
), 0 � s � 1. Suppose that the

following conditions are satis�ed

j� \ �j � Ch� 8� 2 GH
and h . H3=2. Then, the Galerkin solution uS 2 SCFE exists and ful�lls for
su¢ ciently small H

ku� uSkm;
 � CH
1+s�m kukH1+s(
) ;

for m = 0; 1 and C is independent of H and h.

Proof. M. Rech, thesis, 2006 and Rech, Smolianski, S., NuMath, 2006.



A Posteriori Error Estimation

The accuracy in the approximation of the Dirichlet boundary conditions can be
controlled by an a-posteriori error estimator which takes into account the e¤ect
of approximate Dirichlet boundary conditions.

The error estimator consists of three terms. For any v 2 H1 (
), we set

m20 (v) := inf
~v2H1D(
)

a (v � ~v; v � ~v) ;

m2d (v; y
?) :=

Z



�
" (v)� L�1y?

�
: (L" (v)� y?) ;

m2f (y
?) := kdiv y? + fkL2(
) :



Theorem 3. The error of the nonconforming approximation v 2 SCFE of the
exact solution u can be estimated by

a (u� v; u� v)1=2 � 2m0 (v)+md (v; y?)+C
mf (y?) 8y? 2 H (
; div) ;

(1)
where C
 is the constant in Friedrichs�inequality for the domain 
, i.e.,

C
 := sup
w2H1D(
)nf0g

kwkL2(
)
krwkL2(
)

:



Numerical Experiments

Convergence Rates for the Galerkin Solution


 = (�1; 1)2 with a non-aligned rotated overlapping mesh.

level dof error one-scale CFE error(`�1)
error(`)

error two-scale CFE error(`�1)
error(`)

3 162 0:34297 0:24245
4 834 0:18394 1:865 0:12183 1:990
5 3738 0:12994 1:416 0:05171 2:356
6 15786 0:09284 1:340 0:02155 2:340
7 64626 0:06402 1:450 0:00897 2:402



A-Posteriori Error Estimators

E¤ectivity Index

eff :=
estimated energy error

energy error
:

level dof energy error error(`�1)
error(`)

estimated error e¤ectivity index

3 243 0:234 1:345 5:74
4 1251 0:110 2:127 0:692 6:23
5 5607 0:0486 2:263 0:406 8:36
6 23679 0:0165 2:945 0:173 10:46



Analysis for Stokes Flow

Find (u; p) 2 H10 (
)� L20 (
) such that

a (u;v) + b (v; p) = (f ;v)
b (u; q) = 0

8 (v; p) 2 H10 (
)� L20 (
) ;

where

a (u;v) := 2
Z


" (u) : " (v) and b (v; q) := �

Z


q div v:



Finite element approximation

Find (u; p) 2 XH �MH such that

a (u;v) + b (v; p) = (f ;v)
b (u; q) = 0

8 (v; p) 2 XH �MH ;

where (XH ;MH) is the classical mini-element space, i.e.,

XH : pw. linear functions enriched by cubic bubble functions

MH : continuous, pw linear functions with integral mean zero.



Classical Convergence Results

� Coercivity: 8u;v 2 XH a (u;u) � � kuk2H1(
),

� Stability:

infpH2MH
supvH2XHnf0g

b (vH ; pH)

kvHkH1(
) kpHkL2(
)
� � > 0:

� Regularity: (u; p) 2 H1+r (
)�Hr (
) for some 0 < r � 2.

Then: ku� uHkH1(
) + kp� pHkL2(
) � CfHr:



For complicated domains, composite �nite elements violate the boundary
conditions.

This leads to a non-conforming method:

XH �MH  H10 (
)� L20 (
) but XH �MH � H1 (
)� L2 (
).

Then: ku� uHkH1(
)+kp� pHkL2(
) � Cf

0@Hr + sup
vH2XHnf0g

kvHkL2(@
)
kvHkH1(
)

1A :



Model Problem: Domain which contains small holes.



Most Naive Approach: Holes are neglected (due to limited computer capacity)
and a quasi-uniform mesh is employed.

Left-top: Quasi-uniform mesh. Right-top: Absolute velocity error.

Left bottom: Numerical solution on quasi-uniform mesh. Right-bottom: Exact solution



Resolving the holes by an adaptive mesh requires 8 � 10 times more nodal
points.

Left-top: Resolving adaptive mesh. Right-top: Absolute velocity error.

Left bottom: Numerical solution on resolving mesh. Right-bottom: Exact solution



Composite Mini Element. (Number of unknowns is comparable as for quasi-
uniform mesh)

Left-top: CME mesh. Right-top: Absolute velocity error.

Left bottom: Numerical solution on CME mesh. Right-bottom: Exact solution



Convergence Results:

Theorem 4. [Stability, Peterseim/S. SIAM J. Numer. Anal.] The composite
mini element space satis�es the inf-sup-condition

inf
p2MCME

H;h nf0g
sup

u2XCMEH;h nf0g

b (u; p)

kpkL2(
) kukH1(
)
� � > 0:

Theorem 5. [Approximation Property, Peterseim/S. SIAM J. Numer. Anal.]
The composite mini element space satis�es the standard approximation property
already on the non-resolved scales.

inf
v2XCMEH;h

ku� vkH1(
) + inf
q2MCME

H;h

kp� qkL2(
) . H
�
kukH2(
) + kpkH1(
)

�
:



Theorem 6. The discretization with the composite mini element has a unique
solution

�
uH;h; pH;h

�
.

If (u; p) 2 H1+r (
)�Hr (
) for some r 2
i
1
2; 1

i
then

u� uH;hH1(
) + p� pH;hL2(
) . (Hr + �nc (H;h)) kfkHr�1(
) ;
with the measure of non-conformity

�nc (H;h) := sup
vH;h2XCMEH;h nf0g

vH;hL2(@
)vH;hH1(
) .
p
H max
�2Gdof

max
t2Gslave(�)
t\@
 6=;

diam t

diam �
:

If the small and coarse scales h and H satisfy h � Hr+1=2, the asymptotic
convergence rates already hold on the coarse scales.


