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Abstract: We study the family of ideals generated by minors of mixed size con-
tained in a ladder of a symmetric matrix from the point of view of liaison theory. We
prove that they can be obtained from ideals of linear forms by ascending G-biliaison. In
particular, they are glicci.

Introduction

Ideals generated by minors have been studied extensively. They are a central topic
in commutative algebra, where they have been investigated mainly using Gröbner bases
and combinatorial techniques (see among others [10], [18], [1], [2], [21], [17]). They are
also relevant in algebraic geometry, since many classical varieties such as the Veronese and
the Segre variety are cut out by minors. Degeneracy loci of morphisms between direct
sums of line bundles over projective space have a determinantal description, as do the
Schubert varieties.

In this paper, we study ideals of minors in a symmetric matrix from the point of
view of liaison theory. In particular, we consider ideals generated by minors of mixed size
which are contained in a symmetric ladder. Cogenerated ideals in a ladder of a symmetric
matrix belong to the family that we study. The family of cogenerated ideals is a natural
one to study from the combinatorial point of view (see [7] or [8]). However, from the
point of view of liaison theory it is more natural to study a larger class of ideals, as
they naturally arise during the linkage process. We call them symmetric mixed ladder
determinantal ideals.

In Section 1 we set the notation and define symmetric mixed ladder determinantal
ideals (Definition 1.3). In Example 1.5 (3) we discuss why cogenerated ladder determi-
nantal ideals of a symmetric matrix are a special case of symmetric mixed ladder deter-
minantal ideals. In Proposition 1.7 we show that symmetric mixed ladder determinantal
ideals are prime and Cohen-Macaulay. In Proposition 1.8 we express their heigth as the
cardinality of a suitable subladder.

In Section 2 we review the notion of G-biliaison, stating the definition and main
result in the algebraic language (see Definition 2.2 and Theorem 2.4). In Theorem 2.3 we
prove that symmetrix mixed ladder determinantal ideals can be obtained from ideals of
linear forms by ascending G-biliaison. In particular, they are glicci (Corollary 2.5).
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complete intersection, Gorenstein ideal, Cohen-Macaulay ideal.
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1. Ideals of minors of a symmetric matrix

Let K be an algebraically closed field. LetX = (xij) be an n×n symmetric matrix of
indeterminates. In other words, the entries xij with i ≤ j are distinct indeterminates, and
xij = xji for i > j. Let K[X] = K[xij | 1 ≤ i ≤ j ≤ n] be the polynomial ring associated
to the matrix X. In this paper, we study ideals generated by the minors contained in a
ladder of a generic symmetric matrix from the point of view of liaison theory. Throughout
the paper, we only consider symmetric ladders. This can be done without loss of generality,
since the ideal generated by the minors in a ladder of a symmetric matrix coincides with
the ideal generated by the minors in the smallest symmetric ladder containing it.

Definition 1.1. A ladder L of X is a subset of the set X = {(i, j) ∈ N
2 | 1 ≤ i, j ≤ n}

with the following properties :

(1) if (i, j) ∈ L then (j, i) ∈ L (i.e. L is symmetric), and
(2) if i < h, j > k and (i, j), (h, k) ∈ L, then (i, k), (i, h), (h, j), (j, k) ∈ L.

We do not make any connectedness assumption on the ladder L. For ease of notation,
we also do not assume that X is the smallest symmetric matrix containing L. Let

X+ = {(i, j) ∈ X | 1 ≤ i ≤ j ≤ n} and L+ = L ∩ X+.

Since L is symmetric, L+ determines L and viceversa. We will abuse terminology and
call L+ a ladder. Observe that L+ can be written as

L+ = {(i, j) ∈ X+ | i ≤ cl or j ≤ dl for l = 1, . . . , r and i ≥ al or j ≥ bl for l = 1, . . . , u}

for some integers 1 ≤ a1 < . . . < au ≤ n, n ≥ b1 > . . . > bu ≥ 1, 1 ≤ c1 < . . . < cr ≤ n,
and n ≥ d1 > . . . > dr ≥ 1 with au ≤ bu, cr ≤ br, cl+1 ≤ dl for l = 1, . . . , r − 1, and
al ≤ bl+1 for l = 1, . . . , u− 1.

We call (a1, b2), . . . , (au−1, bu) lower outside corners, (a1, b1), . . . , (au, bu) lower

inside corners, (c2, d1), . . . , (cr, dr−1) upper outside corners, and (c1, d1), . . . , (cr, dr)
upper inside corners. If au 6= bu, then (bu, bu) is a lower outside corner and we set
au+1 = bu. Similarly, if cr 6= dr then (dr, dr) is an upper outside corner, and we set
cr+1 = dr. See also Figure 1. A ladder has at least one upper and one lower outside
corner. Moreover, (a1, b1) = (c1, d1) is both an upper and a lower inside corner.

The upper border of L+ consists of the elements (c, d) of L+ such that either
cl ≤ c ≤ cl+1 and d = dl, or c = cl and dl ≤ d ≤ dl−1 for some l. See Figure 2.

All the corners belong to L+. In fact, the ladder L+ corresponds to its set of lower
and upper outside (or equivalently lower and upper inside) corners. The upper corners of
a ladder belong to its upper border.

Given a ladder L we set L = {xij ∈ X | (i, j) ∈ L+}, and denote by K[L] the
polynomial ring K[xij | xij ∈ L]. For t a positive integer, and 1 ≤ r1 ≤ . . . ≤ rt ≤ n,
1 ≤ c1 ≤ . . . ≤ ct ≤ n integers, we denote by [r1, . . . , rt | c1, . . . , ct] the t-minor det(xri,cj

).
We let It(L) denote the ideal generated by the set of the t-minors of X which involve only
indeterminates of L. In particular It(X) is the ideal of K[X] generated by the minors of
X of size t× t.
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(c2, d1)

(a1, b2)

(cr, dr)

(a1, b1) = (c1, d1)

(a2, b2)

(au, bu)

(cr+1, dr)

(n, n)

(1, 1)

Figure 1. An example of ladder with tagged lower and upper corners.

L+

Figure 2. The upper border of the same ladder.

In this article, we study the G-biliaison class of a large family of ideals generated
by minors in a ladder of a symmetric matrix.

Notation 1.2. Let L+ be a ladder. For (c, d) ∈ L+ let

L+
(c,d) = {(i, j) ∈ L+ | i ≤ c, j ≤ d}, L(c,d) = {xij ∈ X | (i, j) ∈ L+

(c,d)}.
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Notice that L+
(c,d) is a ladder according to Definition 1.1 and

L+ =
⋃

(c,d)∈U

L+
(c,d)

where U denotes the set of upper outside corners of L+.

L+
(v,w)

(v, w)

Figure 3. The ladder L+ with a shaded subladder L+
(v,w).

Definition 1.3. Let {(v1, w1), . . . , (vs, ws)} be a subset of the upper border of L+ which
contains all the upper outside corners. We order them so that 1 ≤ v1 ≤ . . . ≤ vs ≤ n
and n ≥ w1 ≥ . . . ≥ ws ≥ 1. Let t = (t1, . . . , ts) be a vector of positive integers. Denote
L(vk ,wk) by Lk. The ideal

It(L) = It1(L1) + . . .+ Its(Ls)

is a symmetric mixed ladder determinantal ideal. Denote I(t,...,t)(L) by It(L). We
call (v1, w1), . . . , (vs, ws) distinguished points of L+.

Remarks 1.4. (1) Let M ⊇ L be two ladders of X , and letM,L be the corresponding
sets of indeterminates. We have isomorphisms of graded K-algebras

K[L]/It(L) ∼= K[M ]/It(L) + (xij | xij ∈M \ L) ∼= K[X]/I2t(L) + (xij | xij ∈ X \ L).

Here It(L) is regarded as an ideal in K[L], K[M ], and K[X] respectively. Then
the height of the ideal It(L) and the property of being prime, Cohen-Macaulay,
Gorenstein, Gorenstein in codimension ≤ c (see Definition 2.1) do not depend on
whether we regard it as an ideal of K[L], K[M ], or K[X].

(2) We can assume without loss of generality that for each l = 1, . . . , s there exists a
k ∈ {1, . . . , u− 1} such that

tl ≤ min{vl − ak + 1, wl − bk+1 + 1}
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In fact, if tl > min{vl − ak + 1, wl − bk+1 + 1} for all k, then Itl(Ll) = 0. If that
is the case, replace L by M := ∪i6=lLi, eliminate (vl, wl) from the distinguished
points and remove the l-th entry of t to get a new vector m. Then we obtain a
new ladder for which the assumption is satisfied and such that Im(M) = It(L).

(3) We can assume that

wk − wk−1 < tk − tk−1 < vk − vk−1, for k = 2, . . . , s.

In fact, if vk − vk−1 ≤ tk − tk−1, by successively developing a tk-minor of Lk

with respect to the first vk − vk−1 rows we obtain an expression of the minor
as a combination of minors of size tk − (vk − vk−1) ≥ tk−1 that involve only
indeterminates from Lk−1. Therefore Itk(Lk) ⊇ Itk−1

(Lk−1). Similarly, if wk −
wk−1 ≥ tk − tk−1, by developing a tk−1-minor of Lk−1 with respect to the last
wk−1 − wk columns we obtain an expression of the minor as a combination of
minors of size tk−1 − (wk−1 − wk) ≥ tk that involve only indeterminates from
Lk. Therefore Itk−1

(Lk−1) ⊆ Itk(Lk). In either case, we can remove a part of the
ladder and reduce to the study of a proper subladder that corresponds to the same
symmetric ladder determinantal ideal.

(4) We can always find k ∈ {1, . . . , s} such that vk > vk−1 and wk > wk+1. In fact,
the two inequalities are satisfied if and only if (vk, wk) is an upper outside corner.
Notice that if we have distinguished points (vk, wk) and (vk+1, wk+1) on the same
row or column, then one of the following holds:

• either vk = vk+1 and tk > tk+1,
• or wk = wk+1 and tk+1 > tk.

In particular, we can find k ∈ {1, . . . , s} such that tk ≥ 2, vk > vk−1 and wk >
wk+1, unless tk = 1 for all k.

The following are examples of determinantal ideals of a symmetric matrix which
belong to the class of ideals that we study.

Examples 1.5. (1) If t = (t, . . . , t) then It(L) is the ideal generated by the t-minors
of X that involve only indeterminates from L. These ideals have been studied
in [4], [5], and [6].

(2) If L = X , then according to Remarks 1.4 we can assume that wl = n for all
l = 1, . . . , s and vs = n. From Remark 1.4 (3), we have tl > tl−1 and vl > vl−1 for
all l. Then It(L) is generated by the t1-minors of the first v1 rows, the t2-minors of
the first v2 rows, . . . , the ts-minors of the whole matrix. This is a simple example
of a cogenerated ideal.

(3) The family of symmetric mixed ladder determinantal ideals contains the family
of cogenerated ideals in a ladder of a symmetric matrix, as defined in [4]. We
follow the notation of [4], and assume for ease of notation that (1, n) are is an inside
corner of L (i.e. that X is the smallest matrix containing L). If α = {α1, . . . , αt},
then Iα(L) = Iτ (L) where {(v1, w1), . . . , (vs, ws)} consists of the upper outside
corners of L, together with the points of the upper border of L which belongs to
row αl −1, for all l for which such an intersection point is unique (if for some l the
intersection of the row αl−1 with the upper border of L consists of more than one



6 ELISA GORLA

point, then L has an upper outside corner on the row αl − 1 and we do not add
any extra point to the set). For each k = 1, . . . , s, we let τk = min{l | αl > vk}.

(4) Let X be a matrix of size m×n, m ≤ n, whose entries are indeterminates. Assume
that X contains a square symmetric submatrix of indeterminates, and that all the
other entries of X are distinct indeterminates. In block notation

X =

(
M N
S P

)

where S is a symmetric matrix of indeterminates and M,N, P are generic matrices
of indeterminates. Let t ∈ Z+. Then It(X) is a symmetric ladder determinantal
ideal generated by the minors of size t× t contained in a symmetric ladder of




Y M N
M t S P
N t P t Z





where Y, Z are symmetric matrices of indeterminates. This was observed by Conca
in [4].

In this section we establish some properties of symmetric mixed ladder determinan-
tal ideals. It is known ([4]) that cogenerated ideals are prime and Cohen-Macaulay. In
the sequel we show that the result of Conca easily extends to symmetric mixed ladder de-
terminantal ideals. We exploit a well known localization technique (see [3], Lemma 7.3.3).
The same argument was used to prove Lemma 1.19 in [12]. For completeness, we state
it for the case of a ladder of a symmetric matrix and we outline the proof. We use the
notation of Definitions 1.1 and 1.3. From Remark 1.4 (4) we know that we can always
find k ∈ {1, . . . , s} such that tk ≥ 2, vk > vk−1 and wk > wk+1, unless t = (1, . . . , 1).

Lemma 1.6. Let L be a ladder of a symmetric matrix X of indeterminates. L has a set
of distinguished points {(v1, w1), . . . , (vs, ws)} ∈ L+ and t = (t1, . . . , ts) ∈ Z

s
+. Let It(L)

be the corresponding symmetric mixed ladder determinantal ideal. Let k ∈ {1, . . . , s} such
that tk ≥ 2, vk > vk−1 and wk > wk+1.

Let t′ = (t1, . . . , tk−1, tk − 1, tk+1, . . . , ts) and let L′ be the ladder obtained from L by
removing the entries (vk−1 +1, wk), . . . , (vk −1, wk), (vk, wk), (vk, wk −1) . . . , (vk, wk+1 +1)
and the symmetric ones. Let

(v1, w1), . . . , (vk−1, vk−1), (vk − 1, wk − 1), (vk+1, wk+1), . . . , (vs, ws)

be the distinguished points of L′.

Then there is an isomorphism

K[L]/It(L)[x−1
vk ,vk

] ∼= K[L′]/It′(L
′)[xvk−1+1,wk

, . . . , xvk−1,wk
, x±1

vk,wk
, xvk,wk−1, . . . , xvk,wk+1+1].

Proof. Under the assumption of the lemma, L′ is a ladder and It′(L
′) is a symmetric mixed

ladder determinantal ideal. Let

A = K[L][x−1
vk ,wk

] and B = K[L′][xvk−1+1,wk
, . . . , xvk−1,wk

, x±1
vk ,wk

, xvk ,wk−1, . . . , xvk ,wk+1+1].
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Define a K-algebra homomorphism

ϕ : A −→ B

xi,j 7−→

{
xi,j + xi,wk

xvk ,jx
−1
vk ,wk

if i 6= vk, j 6= wk and (i, j) ∈ L(vk ,wk),
xi,j otherwise.

The inverse of ϕ is

ψ : B −→ A

xi,j 7−→

{
xi,j − xi,wk

xvk ,jx
−1
vk ,wk

if i 6= vk, j 6= wk and (i, j) ∈ L′
(vk ,wk),

xi,j otherwise.

It is easy to check that ϕ and ψ are inverse to each other. Since

ϕ(Itk(L(vk ,wk))A) = Itk−1(L
′
(vk−1,wk−1))B

we have
ϕ(It(L)A) = It′(L

′)B hence A/It(L)A ∼= B/It′(L
′)B.

�

Using Lemma 1.6 we can establish some properties of symmetric mixed ladder de-
terminantal ideals.

Proposition 1.7. Symmetric mixed ladder determinantal ideals are prime and Cohen-
Macaulay.

Proof. Let It(L) be the symmetric mixed ladder determinantal ideal associated to the
ladder L with distinguished points (v1, w1), . . . , (vs, ws) and t = (t1, . . . , ts). Let tmax =
max{t1, ..., ts}. If tmax = 1 then It(L) is generated by indeterminates, hence it is prime

and Cohen-Macaulay. Therefore assume that tmax ≥ 2 and let L̂ be the ladder with the
same lower outside corners as L, and upper outside corners (vk + tmax − tk, wk + tmax − tk)
for k = 1, . . . , s. Notice that the corners are distinct, and the inequalities of Definition 1.1
are satisfied by Remark 1.4 (3). In other words, for each k = 2, . . . , s we have

wk + tmax − tk < wk−1 + tmax − tk−1 and vk + tmax − tk > vk−1 + tmax − tk−1.

Let L̂ = {xij ∈ X | (i, j) ∈ L̂, i ≤ j} and let M = L̂ \ L. Denote by Itmax(L̂) the

ideal generated by the minors of size tmax which involve only indeterminates in L̂. By
Lemma 1.6 there exists a subset {z1, ..., zm} of M such that

K[L̂]/Itmax(L̂)[z−1
1 , . . . , z−1

m ] ∼= K[L]/It(L)[M ][z−1
1 , . . . , z−1

m ].

The ring K[L̂]/Itmax(L̂) is a Cohen-Macaulay domain by Theorem 1.13 in [4]. Therefore
K[L]/It(L)[M ][z−1

1 , . . . , z−1
m ] is a Cohen-Macaulay domain. Since M is a set of indeter-

minates over the ring K[L]/It(L) and z1, ...., zm ∈ M , then K[L]/It(L)[M ] is a Cohen-
Macaulay domain. Hence It(L) is prime and Cohen-Macaulay. �

A standard argument allows us to compute the height of symmetric mixed ladder
determinantal ideals. These heights have been computed by Conca in [4] for the family
of cogenerated ideals. The arguments in [4] are of a more combinatorial nature, and the
height is expressed as a sum of lengths lengths of maximal chains in some subladders. Our
formula for the height is very simple. The proof is independent of the results of Conca,
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and it essentially follows from Lemma 1.6. We use the same notation as in Definitions 1.1
and 1.3, and Lemma 1.6. An example is given in Figure 4.

Proposition 1.8. Let L be a ladder with distinguished points (v1, w1), . . . , (vs, ws) and let

H+ = {(i, j) ∈ L+ | i ≤ vk−1 − tk−1 + 1 or j ≤ wk − tk + 1 for k = 2, . . . , s,

j ≤ w1 − t1 + 1, i ≤ vs − ts + 1}.

Let H = H+ ∪ {(j, i) | (i, j) ∈ H+}. Then H is a symmetric ladder and

ht It(L) = |H+|.

L+

H+

Figure 4. An example of L+ with three distinguished points and t =
(3, 6, 4). The corresponding H+ is shaded.

Proof. Observe that by Remark 1.4 (3)

vk − tk + 1 > vk−1 − tk−1 + 1, and wk − tk + 1 < wk−1 − tk−1 + 1.

Therefore H is a ladder with upper outside corners {(vk−tk +1, wk−tk +1) | k = 1, . . . , s}
and the same lower outside corners as L. Let H = {xi,j | (i, j) ∈ H+}. We argue by
induction on τ = t1 + . . .+ ts ≥ s. If τ = s, then t1 = . . . = ts = 1, and L = H. Hence

I1(L) = (xij | xij ∈ L) = I1(H) = |H+|.

Assume now that the thesis holds for τ − 1 ≥ s and prove it for τ . Since τ > s, by
Remark 1.4 (4) there exists k ∈ {1, . . . , s} such that tk ≥ 2, vk > vk−1 and wk > wk+1.
By Lemma 1.6 we have an isomorphism

K[L]/It(L)[x−1
vk ,wk

] ∼= K[L′]/It′(L
′)[xvk−1,wk

, . . . , xvk−1,wk
, x±1

vk,wk
, xvk,wk−1, . . . , xvk ,wk+1+1].

Since xvk ,wk
does not divide zero modulo It′(L

′) and It(L), we have

ht It(L) = ht It′(L
′).



SYMMETRIC LADDERS AND G-BILIAISON 9

The thesis follows by the induction hypothesis, observing that the same ladder H computes
the height of both It′(L

′) and It(L). �

2. G-biliaison of symmetric mixed ladder determinantal ideals

In this section we study symmetric mixed ladder determinantal ideals from the
point of view of liaison theory. We prove that they belong to the G-biliaison class of a
complete intersection. In particular, they are glicci. This is yet another family of ideals of
minors for which one can perform a descending G-biliaison to an ideal in the same family,
in such a way that one eventually reaches an ideal generated by linear forms. Other
families of ideals that were treated with an analogous technique are ideals generated by
maximal minors of a matrix with polynomial entries [16], minors of a symmetric matrix
with polynomial entries [11], minors of a matrix with polynomial entries [13], minors of
mixed size in a ladder of a generic matrix [12], and pfaffians of mixed size in a ladder of
a generic skew-symmetric matrix [9].

In [14], [15], [16] Hartshorne developed the theory of generalized divisors, which is
a useful language for the study of Gorenstein liaison via the study of G-biliaison classes.
In [15] it was shown that even CI-liaison and CI-biliaison generate the same equivalence
classes. In [19] they proved that a G-biliaison on an arithmetically Cohen-Macaulay, G1

scheme can be realized via two G-links. The result was generalized in [16] to G-biliaison
on an arithmetically Cohen-Macaulay, G0 scheme.

In Proposition 1.7 we saw that symmetric mixed ladder determinantal ideals are
prime, hence they define reduced and irreducible, projective algebraic varieties. Since we
wish to work in the algebraic setting, we state the definition of G-biliaison and the main
theorem connecting G-biliaison and G-liaison in the language of ideals.

Definition 2.1. Let R = K[L] and let J ⊆ R be a homogeneous, saturated ideal. We say
that J is Gorenstein in codimension ≤ c if the localization (R/J)P is a Gorenstein
ring for any prime ideal P of R/J of height smaller than or equal to c. We often say
that J is Gc. We call generically Gorenstein, or G0, an ideal J which is Gorenstein in
codimension 0.

Definition 2.2. ([16], Sect. 3) Let R = K[X] and let I1 and I2 be homogeneous ideals in
R of pure height c. We say that I1 is obtained by an elementary G-biliaison of height
h from I2 if there exists a Cohen-Macaulay, generically Gorenstein ideal J in R of height
c − 1 such that J ⊆ I1 ∩ I2 and I1/J ∼= [I2/J ](−h) as R/J-modules. If h > 0 we speak
about ascending elementary G-biliaison.

The following theorem gives a connection between G-biliaison and G-liaison.

Theorem 2.3. [Kleppe, Migliore, Mirò-Roig, Nagel, Peterson [19]; Hartshorne [16]] Let
I1 be obtained by an elementary G-biliaison from I2. Then I2 is G-linked to I1 in two
steps.

We now show that symmetric mixed ladder determinantal ideals belong to the G-
biliaison class of a complete intersection. The idea of the proof is as follows: starting from
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a symmetric mixed ladder determinantal ideal I, we construct two symmetric mixed ladder
determinantal ideals I ′ and J such that J is contained in I∩I ′ and ht I = ht I ′ = ht J+1.
We show that I can be obtained from I ′ by an elementary G-biliaison of height 1 on J .

Theorem 2.4. Any symmetric mixed ladder determinantal ideal can be obtained from an
ideal generated by linear forms by a finite sequence of ascending elementary G-biliaisons.

Proof. Let It(L) be a symmetric mixed ladder determinantal ideal associated to a ladder
L+ with distinguished points (v1, w1), . . . , (vs, ws). Let Lk = L(vk ,wk), then

It(L) = It1(L1) + · · ·+ Its(Ls) ⊆ K[L].

As discussed in Remark 1.4 (1) we will not distinguish between symmetric mixed ladder
determinantal ideals and their extensions. Therefore, all ideals will be in R = K[L]. If
t1 = . . . = ts = 1 then It(L) is generated by linear forms. Hence let tk = max{t1, . . . , ts} ≥
2. From Remark 1.4 (3) we have that wk+1 − wk < 0 < vk − vk−1. In particular (vk, wk)
is an upper outside corner.

Let L′+ be the ladder obtained from L+ by removing the entries (vk−1 + 1, wk), . . . ,
(vk − 1, wk), (vk, wk), (vk, wk + 1), . . . , (vk, wk+1 − 1). Let (v1, w1), . . . , (vk−1, wk−1), (vk −
1, wk−1), (vk+1, wk+1), . . . , (vs, ws) be the distinguished points of L′+, and let t′ = (t1, . . . ,
tk−1, tk − 1, tk+1, . . . , ts). Let It′(L

′) be the associated symmetric mixed ladder determi-
nantal ideal. It is easy to check that L′+ and t′ satisfy the inequalities of Definition 1.3
and of Remarks 1.4. By Proposition 1.8, ht It(L) = ht It′(L

′) = |H+| where

H+ = {(i, j) ∈ L+ | i ≤ vk−1 − tk−1 + 1 or j ≤ wk − tk + 1 for k = 2, . . . , s,

j ≤ w1 − t1 + 1, i ≤ vs − ts + 1}.

Let J + be the ladder obtained from L+ by removing (vk, wk), and let (v1, w1), . . . ,
(vk−1, wk−1), (vk − 1, wk), (vk, wk − 1)(vk+1, wk+1), . . . , (vs, ws) be its distinguished points.

Let u = (t1, . . . , tk−1, tk, tk, tk+1, . . . , ts). Then

Iu(J) = It1(L1)+. . .+Itk−1
(Lk−1)+Itk(J(vk−1,wk))+Itk(J(vk ,wk−1))+Itk+1

(Lk+1)+. . .+Its(Ls).

In other words, Iu(J) is the ideal generated by the minors of It(L) that do not in-
volve the indeterminate xvk ,wk

. We claim that Iu(J) ⊆ It(L) ∩ It′(L
′). It is clear that

Iu(J) ⊆ It(L). The inclusion Iu(J) ⊆ It′(L
′) follows from Itk(L(vk−1,wk))+Itk(L(vk ,wk−1)) ⊂

Itk−1(L
′
(vk−1,wk−1)).

By Proposition 1.8 ht Iu(J) = |I+|, where I+ = H+ \ {(vk − tk + 1, wk − tk + 1)}.
Therefore ht Iu(J) = ht It(L) − 1. The ideal Iu(J) is prime and Cohen-Macaulay by
Proposition 1.7. In particular it is generically Gorenstein.

We claim that It(L) is obtained from It′(L
′) by an elementary G-biliaison of height

1 on Iu(J). This is equivalent to showing that

(1) It(L)/Iu(J) ∼= [It′(L
′)/Iu(J)](−1)

as R/Iu(J)-modules. Denote by KJ the ring of total quotients of R/Iu(J), and by
[α1, . . . , αt; β1, . . . , βt] the t × t-minor of X which involves rows α1, . . . , αt and columns
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L′+

J +

Figure 5. An example of L+ with L′+ and J +. The distinguished point
(vk, wk) is marked. L′+ is colored in a darker shade and the entries which
belong to J + but not to L′+ are colored in a lighter shade.

β1, . . . , βt. Multiplication by

f =
[vk − tk + 1, . . . , vk − 1;wk − tk + 1, . . . , wk − 1]

[vk − tk + 1, . . . , vk − 1, vk;wk − tk + 1, . . . , wk − 1, wk]
∈ KJ

yields an isomorphism between It(L)/Iu(J) and [It′(L
′)/Iu(J)](−1), regarded as R/Iu(J)-

submodules of KJ . Notice in fact that the ideal

It(L)/Iu(J) ∼= Itk(Lk)/Itk(J(vk−1,wk)) + Itk(J(vk ,wk−1))

is generated by the minors of size tk × tk of Lk which involve both row vk and column wk,
while the ideal

It′(L
′)/Iu(J) ∼= Itk−1(L

′
(vk−1,wk−1))/Itk(J(vk−1,wk)) + Itk(J(vk,wk−1))

is generated by the minors of size (tk − 1) × (tk − 1) of L′
k. By [11], Lemma 2.6 for any

choice of minors [α1, . . . , αtk−1, vk; β1, . . . , βtk−1, wk], [γ1, . . . , γtk−1, vk; δ1, . . . , δtk−1, wk] in
Itk(Lk), then the minors [α1, . . . , αtk−1; β1, . . . , βtk−1] and [γ1, . . . , γtk−1; δ1, . . . , δtk−1] are
in Itk−1(L

′
k) and

[α1, . . . , αtk−1; β1, . . . , βtk−1] · [γ1, . . . , γtk−1, vk; δ1, . . . , δtk−1, wk] =

[γ1, . . . , γtk−1; δ1, . . . , δtk−1] · [α1, . . . , αtk−1, vk; β1, . . . , βtk−1, wk]

modulo Iu(J). Therefore the isomorphism (1) holds, and It(L) and It′(L
′) are G-bilinked

on Iu(J). Repeating this procedure, one eventually reaches the ideal generated by the
entries of the ladder H defined in Proposition 1.8. Clearly I1(H) = (xij | (i, j) ∈ H is a
complete intersection. �
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The following is a straightforward consequence of Theorem 2.4, according to Theo-
rem 2.3.

Corollary 2.5. Every symmetric mixed ladder determinantal ideal It(L) can be G-linked
in 2(t1 + . . . + ts) steps to a complete intersection of linear forms of the same height.
Hence symmetric mixed ladder determinantal ideals are glicci.
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[17] J. Herzog, N. V. Trung, Gröbner bases and multiplicity of determinantal and Pfaffian ideals, Adv.

Math. 96 (1992), no. 1, 1–37.
[18] H. Kleppe, D. Laksov, The generic perfectness of determinantal schemes, Algebraic geometry (Proc.

Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), 244–252, Lecture Notes in Math. 732,
Springer, Berlin (1979).
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