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Abstract. Let Hilbp be the Hilbert scheme parametrizing the closed sub-

schemes of Pn
K with Hilbert polynomial p ∈ Q[t] over a field K of characteristic

zero. By bounding below the cohomological Hilbert functions of the points of

Hilbp we define locally closed subspaces of the Hilbert scheme. The aim of

this paper is to show that some of these subspaces are connected. For this
we exploit the edge ideals constructed by D. Mall in [15]. It turns out that

these ideals are sequentially Cohen-Macaulay and that their initial ideals with
respect to the reverse lexicographic term order are generic initial ideals.

0. Introduction

Let Hilbp = Hilbp
Pn
K

be the Hilbert scheme of projective space over a field K

with respect to a polynomial p ∈ Q[t]. It is well known that Hilbp is connected
[11]. For each point x ∈ Hilbp let h0

x : Z → N denote the Hilbert function of the
associated ideal sheaf I(x) ⊂ OPn

κ(x)
. Several approaches have been chosen to prove

that subsets of Hilbp which are defined by bounding the functions h0
x are connected

[8], [15], [16], [17].
For i ∈ N and x ∈ Hilbp define the ith cohomological Hilbert function

hi
x : Z → N, m 7→ dimκ(x) Hi

(
Pn
κ(x), I

(x)(m)
)
.

Fix a sequence (fi)i∈N of numerical functions fi : Z → N. Then by the Semiconti-
nuity Theorem

H≥ := H≥
Pn
K

:= {x ∈ Hilbp | hi
x ≥ fi ∀ i ∈ N}

is a closed subspace of Hilbp and

H= := H=
Pn
K

:= {x ∈ Hilbp | h0
x = f0, hi

x ≥ fi ∀ i ≥ 1}

is a locally closed subspace of Hilbp. In this paper we show (cf. Theorem 3.5):

(0.1) H≥ and H= are connected if char K = 0.

We endow the subsets H≥ and H= with the induced reduced scheme structure.
By flat base change and functorial arguments it follows that H≥

Pn
k

∼= (H≥
Pn
K
×K k)red

and H=
Pn
k

∼= (H=
Pn
K
×K k)red for any field extension K ⊂ k. Hence, it suffices to show

the connectedness of H≥ and H= in the case when K is algebraically closed.
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From now on we assume that K is algebraically closed and of characteristic zero.
The closed points of Hilbp are precisely the saturated homogeneous ideals with
Hilbert polynomial q(t) :=

(
t+n
n

)
− p(t) of the polynomial ring S := K[X0, . . . , Xn].

For a homogeneous ideal a ⊂ S and i ∈ N define the ith locally cohomological
Hilbert function

hi
a : Z → N, m 7→ dimK Hi

S+
(a)m,

where Hi
S+

(a) denotes the (graded) ith local cohomology module of a with respect
to the irrelevant ideal S+ := (X0, . . . , Xn). Furthermore, let ha denote the Hilbert
function of a. By the Serre-Grothendieck Correspondence the cohomology modules
of sheaves correspond to local cohomology modules. Hence the set of closed points
of H= equals

I= :=
{

a ⊂ S
∣∣∣ a is a saturated homogeneous ideal with

ha = f0 and hi
a ≥ fi−1 for all i ≥ 2

}
and the set of closed points of H≥ equals

I≥ :=
{

a ⊂ S
∣∣∣ a is a saturated homogeneous ideal with Hilbert poly-

nomial q such that ha ≥ f0 and hi
a ≥ fi−1 for all i ≥ 2

}
.

A set I of saturated homogeneous ideals of S is said to be connected by Gröbner
deformations if for any two ideals a, b ∈ I there exists a sequence of ideals a =
c1, . . . , cr = b in I such that ci is the saturation of the initial ideal or of the the
generic initial ideal of ci+1 with respect to some term order or vice versa for all
i ∈ {1, . . . , r−1}. We exploit the ideals constructed by D. Mall in [15] to show that
I= and I≥ are connected by Gröbner deformations. With techniques, described
in Chapter 15.8 of [6], one shows that connectedness by Gröbner deformations
implies connectedness in sense of topology for the sets H≥ and H= (cf. proof of
Theorem 3.5).

To prove that a set I of saturated homogeneous ideals of S, defined by bounding
the locally cohomological Hilbert functions, is connected by Gröbner deformations,
sequentially Cohen-Macaulay ideals (i.e. ideals a ⊂ S such that S/a is a sequentially
Cohen-Macaulay S-module) play an important role:

(0.2) Let a ⊂ S be a homogeneous ideal, and let Ginrlex a be its generic initial
ideal with respect to the homogeneous reverse lexicographic order. Then hi

a =
hi

Ginrlex a for all i ∈ N if and only if a is sequentially Cohen-Macaulay (cf.
[13]).

On the other hand we always have:

(0.3) Let a ⊂ S be a homogeneous ideal. Then hi
a ≤ hi

in a for all i ∈ N with respect
to any term order on S (cf. [18]).

In his Habilitationsschrift of 1997, D. Mall showed that the two sets

I= := {a ⊂ S | a is a saturated homogeneous ideal with ha = f0},

I≥ := {a ⊂ S | homogeneous, saturated, with Hilb. poly. q and ha ≥ f0}

are connected by Gröbner deformations. Observe that I= ⊂ I=, I≥ ⊂ I≥ are
subsets. Indeed Mall described an algorithm providing the following fact:



HILBERT SCHEME STRATA DEFINED BY BOUNDING COHOMOLOGY 3

(0.4) Assume that I= is not empty. Then there exists an ideal lf0 ∈ I=, (a so
called growth-height-lexicographic ideal depending uniquely on f0, cf. [14]),
such that for each a ∈ I= there exists a sequence of ideals c1, . . . , cr in I=
such that

• inrlex c1 = Ginrlex a,
• inrlex ci = inhlex ci−1 for all i ∈ {2, . . . , r},
• inhlex cr = lf0 .

Moreover, there exists a sequence of ideals d1, . . . , ds in I≥ such that

• inrlex d1 = lf0 ,
• inrlex di = (inhlex di−1)sat for all i ∈ {2, . . . , s},
• (inhlex ds)sat = lp,
• hinrlex di

= hdi
≤ h(inhlex di)sat for all i ∈ {1, . . . , s}.

where lq denotes the unique saturated lexicographic ideal with Hilbert polyno-
mial q (cf. [15]).

I will call the ideals ci and di Mall ideals. These ideals have a lot of nice properties:
At first, they are generated by monomials and by homogeneous binomials. More
precisely, the binomials are all parallel. Hence Mall ideals are edge ideals (cf. [1]):
For every Mall ideal c there exists ρ ∈ Zn+1 \ {0} with ρ0 + · · ·+ ρn = 0 such that
c is homogeneous with respect to the induced Zn+1/ρZ-grading of S. In particular
they are edge providing : Any Mall ideal has exactly two initial ideals, namely one
with respect to the homogeneous lexicographic order ≥hlex and one with respect
to the homogeneous reverse lexicographic order ≥rlex. Moreover, these two initial
ideals are fixed by the action of the Borel group.

In the main part of this paper we prove the following two statements (cf. Theorem
2.18 and Theorem 2.28):

(0.5) Mall ideals are sequentially Cohen-Macaulay.

(0.6) If c ⊂ S is a Mall ideal, then Ginrlex c = inrlex c.

Therefore, on use of the facts (0.2), (0.3) and (0.4) it follows (cf. Proposition
3.4):

(0.7) The sets I= and I≥ are connected by Gröbner deformations.

This finishes the proof of statement (0.1).
The calculations of the examples (cf. 2.4, 2.8, 2.29) have been performed with

CoCoA [4].
This paper is based on my Ph. D. thesis [7] to which I refer for technical details.

1. Preliminaries

In this section we introduce the needed combinatorial and algebraic notions and
collect some results about initial and generic initial ideals. The latter ones play an
important role in the proof of connectedness of Hilbert schemes: A homogeneous
ideal a in a polynomial ring K[X1, . . . , Xn] over a field K and its generic initial ideal
Gin a have the same Hilbert function. Furthermore, by means of weight orders, they
are connected in the Hilbert scheme by a sequence of lines (cf. section 3).
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Generic initial ideals are Borel-fixed, which means that they are fixed under the
action of upper triangular matrices. If K has characteristic zero, they correspond to
Borel sets which have a combinatorial behavior which is rather easy to understand
(cf. section 1.2).

1.1. Notations and definitions.

Notation 1.1. Let N denote the set of nonnegative integers. Throughout this
paper n, d ∈ N \ {0} are two positive integers.

Let K be a field with charK = 0.
We fix a polynomial ring S := K[X1, . . . , Xn]. (In the last section S will denote

the polynomial ring K[X0, . . . , Xn] in one variable more.) Any polynomial ring is
endowed with the standard Z-grading.

Let denote T the set of monomials of S. Define Nn
d := {a ∈ Nn | a1+· · ·+an = d}.

Then there is a bijection Nn
d → T ∩ Sd, a 7→ Xa := Xa1

1 · · ·Xan
n . Via this bijection

we may identify the elements of Nn with the monomials in T.
Let denote >hlex the homogeneous lexicographic order and >rlex the reverse lex-

icographic order of T. Both term orders are admissible, i.e. X1 > · · · > Xn and
deg u > deg v ⇒ u > v for all u, v ∈ T.

Definition 1.2. Let B ⊂ Nn
d . A subset A ⊂ B is called a lexicographic segment of

B if for all a, b ∈ B with a ∈ A and b >hlex a we have b ∈ A.
The subset B ⊂ Nn

d is called lexicographic if B is a lexicographic segment of Nn
d .

In this case, also the set XB := {Xb ∈ T | b ∈ B} is called lexicographic.
A monomial ideal a ⊂ S is called a lex ideal if ai∩T is lexicographic for all i ∈ N.

Definition 1.3. Let R =
⊕

i∈N Ri be a homogeneous Noetherian ring and M a
finitely generated graded R-module. Let R+ :=

⊕
i>0 Ri denote the irrelevant ideal

of R. For i ∈ N let Hi
R+

(M) denote the ith local cohomology module of M with
respect to R+, endowed with its natural grading (cf. [2, Chap. 12]).

Let denote by hM : Z → N, i 7→ dimK Mi the Hilbert function of M .
A polynomial p ∈ Q[t] is called an admissible Hilbert polynomial if there exists

a homogeneous ideal a ⊂ S with Hilbert polynomial p.

Remark 1.4. Let a ⊂ S be a homogeneous ideal. Then there exists a unique lex
ideal alex ⊂ S with ha = halex (cf. [19, 4]).

Let p ∈ Q[t] be an admissible Hilbert polynomial. Then there exists a unique
saturated lex ideal lp ⊂ S with Hilbert polynomial p (cf. [7, 1.11]).

Remark 1.5. Let a ⊂ S be a homogeneous ideal and let τ be a term order of T.
Then ha = hinτ a (cf. [6, 15.26]).

We introduce some more combinatorial notations:

Notation 1.6. For any set L and any integer m ∈ N let L(n,m) denote the set of
all n×m matrices [Mij | 1 ≤ i ≤ n, 1 ≤ j ≤ m] with entries Mij ∈ L.

Set U(n) := {M ∈ N(n,n) | Mij = 0 ∀ 1 ≤ j < i ≤ n}.
Let g = [gij | 1 ≤ i ≤ n, 1 ≤ j ≤ n] ∈ K(n,n) be a matrix. Then we denote

by g : S → S the homomorphism of K-algebras defined by Xj 7→
∑n

i=1 gijXi for
1 ≤ j ≤ n.

For two functions f, g : Z → N we write f ≥ g if f(k) ≥ g(k) for all k ∈ Z, and
we write f > g if f ≥ g and if there exists k ∈ Z such that f(k) > g(k).
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For 1 ≤ i ≤ n, let ei ∈ Nn denote the standard vector with (ei)j = 1 if i = j and
(ei)j = 0 otherwise.

For the following notations let a = (a1, . . . , an) ∈ Zn and A ⊂ Nn:
m(a) := max ({1 ≤ i ≤ n | ai 6= 0} ∪ {1}),
A + a := {b + a | b ∈ A},
a∗ := a− anen = (a1, . . . , an−1, 0),
A∗ := {b∗ | b ∈ A},
a+ := (max {a1, 0}, . . . ,max {an, 0}) ∈ Nn,
a− := (−min {a1, 0}, . . . ,−min {an, 0}) ∈ Nn, so that a = a+ − a−.

1.2. Borel sets. Since the characteristic of K is zero, the Borel-fixed ideals a ⊂
S are monomial ideals which are characterized by the following property: If a
monomial m ∈ a is divisible by an indeterminate Xj , then Xi

Xj
m ∈ a for all i ≤ j.

In each homogeneous component they correspond to so called Borel sets. Borel sets
are the Borel order analogue to lexicographic sets.

There are several equivalent ways to define the Borel order. The most plausible
is the following one: For all monomials m ∈ T and for all 1 ≤ k < n set Xk m >Bor

Xk+1 m and take the associative hull:

Definition 1.7. Define the Borel order ≥Bor of Nn
d as follows. Let a, b ∈ Nn

d .
a ≥Bor b :⇔ ∃α1, . . . , αn−1 ∈ N : a− b =

∑n−1
j=1 αj(ej − ej+1).

A set A ⊂ Nn
d is called a Borel set if for all a, b ∈ Nn

d with a ∈ A and b ≥Bor a
we have b ∈ A. In this case, also the set XA ⊂ T is called a Borel set.

For technical reasons it will be more convenient to have a description of the Borel
order by upper triangular integer matrices (s. Lemma 1.12).

As a consequence of the fact that generic initial ideals are Borel-fixed inde-
pendently of the admissible term order (Proposition 1.14) we have the following
characterization of the Borel order:

Lemma 1.8 ([5, 2.2]). Let a, b ∈ Nn
d . Then it holds a ≥Bor b if and only if Xa ≥ Xb

for all admissible term orders ≥ of T.

Remark 1.9. Let a, b ∈ Nn
d and ρ ∈ Zn such that a+ρ, b+ρ ∈ Nn

d . Then a ≥Bor b
if and only if a + ρ ≥Bor b + ρ.

Definition 1.10. A monomial ideal a ⊂ S is called a Borel ideal if ai∩T is a Borel
set for all i ∈ N.

Remark 1.11. If a ⊂ S is a Borel ideal, then asat = (a : X∞
n ) (cf. [6, 15.24]).

Hence, if B ⊂ Nn
d is a Borel set, then the set XB∗

is a Gröbner basis of (XB)sat

with respect to any term order of T.

Lemma 1.12. Let a, b ∈ Nn
d . Then the following are equivalent:

(i) a ≥Bor b,

(ii) ∃M ∈ U(n) :
n∑

i=1

Mij = bj ∀ 1 ≤ j ≤ n,
n∑

j=1

Mij = ai ∀ 1 ≤ i ≤ n.

Proof. (i)⇒(ii): Let a ≥Bor b. Choose αk ∈ N for all 1 ≤ k < n such that
a− b =

∑n−1
k=1 αk(ek − ek+1). Set α0 := 0 and m := −

∑n
i=1 min {0, bi − αi−1}. We
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will construct a sequence of matrices M(0), . . . , M(m) ∈ Z(n,n) such that for all
0 ≤ k ≤ m the following properties hold:

(1) M(k)ij = 0 for all 1 ≤ j < i ≤ n,

(2) M(k)ij ≥ 0 for all 1 ≤ i < j ≤ n,

(3)
n∑

i=1

M(k)ij = bj for all 1 ≤ j ≤ n,

(4)
n∑

j=1

M(k)ij = ai for all 1 ≤ i ≤ n,

(5)
n∑

i=1

min {0,M(k)ii} = k −m.

Property (5) implies that M(m)ii ≥ 0 for all 1 ≤ i ≤ n, hence M(m) is the
requested matrix in U(n).

Define M(0) ∈ Z(n,n) by M(0)ij :=


αi, if i = j − 1;
bi − αi−1, if i = j;
0, otherwise.

It is clear that M(0) has the properties (1), (2), (3) and (5). Setting αn := 0, we
have for all 1 ≤ i ≤ n

n∑
j=1

M(0)ij = bi − αi−1 + αi = bi +
(n−1∑

k=1

αk(ek − ek+1)
)
i
= ai,

whence M(0) has also property (4).
If m > 0, we construct M(1), . . . , M(m) recursively. Let 0 ≤ k < m and

assume that M(k) ∈ Z(n,n) with the required properties is constructed already.
Since k < m, by property (5) there exists

l := min {1 ≤ j ≤ n | M(k)jj < 0}.

Properties (1), (3) and (4) imply that there exist p, q ∈ N with 1 ≤ p < l < q ≤ n
and M(k)pl, M(k)lq > 0. Now define M(k + 1) ∈ Z(n,n) by

M(k + 1)ij :=


M(k)ij + 1, if (i, j) ∈ {(l, l), (p, q)};
M(k)ij − 1, if (i, j) ∈ {(p, l), (l, q)};
M(k)ij , otherwise.

It is clear that M(k + 1) has the required properties.

(ii)⇒(i): For 1 ≤ k < n set αk :=
∑k

i=1 ai − bi. If there exists M ∈ U(n) such
that

∑n
i=1 Mij = bj for all 1 ≤ j ≤ n and

∑n
j=1 Mij = ai for all 1 ≤ i ≤ n, then

it follows that αk ∈ N for all 1 ≤ k < n. Furthermore, an easy computation gives
a− b =

∑n−1
k=1 αk(ek − ek+1) (cf. [7, 1.26]). �

1.3. Generic initial ideals and reverse lexicographic order. Generic initial
ideals have a lot of nice properties. We already mentioned that they are fixed under
the action of the Borel group. In this section we show that if S is endowed with the
reverse lexicographic order, then their formation commutes with saturation. (As
before, we assume that charK = 0).
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Definition 1.13. The unipotent subgroup U ⊂ Gl(n, K) is the group of all upper
triangular matrices with ones on the diagonal.

Proposition 1.14 ([6, Chap. 15.9]). Let a ⊂ S be a homogeneous ideal and τ an
admissible term order of T.

a) There is a non-empty Zariski open set U ⊂ Gl(n, K) and a unique ideal
Ginτ a ⊂ S such that Ginτ a = inτ g(a) for all g ∈ U . Furthermore, the open set U
meets the unipotent group U .

The ideal Ginτ a is called the generic initial ideal of a with respect to τ .
b) The generic initial ideal Ginτ a is Borel-fixed, i. e. for all upper triangular

matrices g ∈ Gl(n, K) it holds g(Ginτ a) = Ginτ a.
c) An ideal b ⊂ S is Borel-fixed if and only if it is a Borel ideal.

Corollary 1.15. If a homogeneous ideal of S remains fixed under the action of U ,
then its generic initial ideal and its initial ideal with respect to any admissible term
order coincide.

Proposition 1.16. Let a ⊂ S be a homogeneous ideal. Then

Ginrlex(asat) = (Ginrlex a)sat.

Proof. Let P :=
⋃

p∈Ass(S/a)\{S+} p be the set of all elements of S contained in
some relevant associated prime of S/a. We first show that (a : u∞) = asat for all
u ∈ S1 \ P . Let u ∈ S1 \ P . Let r ∈ N be such that asat = (a : Sr

+). Since ur /∈ P ,
it holds (0 :S/a ur) = H0

S+
(0 :S/a ur) (cf. [2, 18.3.8 (iii)]). It follows (a : ur) = asat.

We next prove that there exists a non-empty Zariski open set U ⊂ Gl(n, K) such
that g(asat) = (g(a) : X∞

n ) for all g ∈ U . Since #K = ∞, the open subset S1 \P ⊂
S1 is not empty, whence U := {g ∈ Gl(n, K) | g−1(Xn) /∈ P} is a dense open subset
of Gl(n, K). Let g ∈ U . Then it holds g(asat) = g(a : g−1(Xn)∞) = (g(a) : X∞

n ).
Choose g ∈ U such that Ginrlex a = inrlex g(a) and Ginrlex(asat) = inrlex g(asat).

Since Ginrlex(a) is a Borel ideal, (Ginrlex a : X∞
n ) = (Ginrlex a)sat (cf. Remark 1.11).

By [6, 15.12] we have inrlex(g(a) : X∞
n ) = (inrlex g(a) : X∞

n ). Altogether we
obtain Ginrlex(asat) = inrlex g(asat) = inrlex(g(a) : X∞

n ) = (inrlex g(a) : X∞
n ) =

(Ginrlex a : X∞
n ) = (Ginrlex a)sat. �

2. Mall ideals

Fix a polynomial q ∈ Q[t] and a function f : Z → N. Define the sets

I= := {a ⊂ S | a is a saturated homogeneous ideal with ha = f},

I≥ :=
{

a ⊂ S
∣∣∣ a is a saturated homogeneous ideal with Hilbert

polynomial q and with ha ≥ f

}
.

D. Mall described an algorithm which yields the following proposition (cf. the pic-
ture below):

Proposition 2.1 ([15]). Assume that I= is not empty. Then there exists an ideal
lf ∈ I=, (a so called growth-height-lexicographic ideal depending uniquely on f ,
cf. [14]), such that for each a ∈ I= there exists a sequence of ideals c1, . . . , cr in I=
such that

• inrlex c1 = Ginrlex a,
• inrlex ci = inhlex ci−1 for all i ∈ {2, . . . , r},
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• inhlex cr = lf .

Moreover, there exists a sequence of ideals d1, . . . , ds in I≥ such that

• inrlex d1 = lf ,
• inrlex di = (inhlex di−1)sat for all i ∈ {2, . . . , s},
• (inhlex ds)sat = lq,
• hinrlex di = hdi < h(inhlex di)sat for all i ∈ {1, . . . , s}.

I= I≥

a
@@@

c1

��� >>>
c2

~~~
... cr

???
d1

~~~ ???
d2

}}}
... ds

99

Ginrlex a

=inrlex c1

inhlex c1

=inrlex c2

inhlex cr=

lf =inrlex d1

(inhlex d1)
sat

=inrlex d2

(inhlex ds)sat

=lq

Hence the two sets I= and I≥ are connected by Gröbner deformations in the
following sense:

Definition 2.2. A set I of saturated homogeneous ideals of S is said to be connected
by Gröbner deformations if for any two ideals a, b ∈ I there exists a sequence
of ideals a = c1, . . . , cr = b in I such that for all i ∈ {1, . . . , r − 1} it holds
ci = (inτ ci+1)sat, ci = (Ginτ ci+1)sat, ci+1 = (inτ ci)sat, or ci+1 = (Ginτ ci)sat with
respect to some term order τ on S.

Definition 2.3. An ideal c ⊂ S is called Mall ideal, if there exist f : Z → N,
q ∈ Q[t], a ∈ I=, r, s ∈ N and c1, . . . , cr, d1, . . . , ds, computed by Mall’s algorithm
as in Proposition 2.1, such that c ∈ {c1, . . . , cr, d1, . . . , ds}.

Example 2.4. Let S := K[x, y, z, t] and q(t) :=
(
t+3
3

)
− (2t + 3) = t3

6 + t2 − t
6 − 2.

Define f : Z → N by f(m) := 0 for m ≤ 2 and f(m) := q(m) for m ≥ 3. The
growth-height-lexicographic ideal with respect to f is lf = (x2, xy, xz, y3, y2z) ∈ I=.
The saturated lex ideal with Hilbert polynomial q is lq = (x, y3, y2z2) ∈ I≥.

There are just three saturated Borel ideals with Hilbert polynomial q, namely
lf , lq and b := (x2, xy, y2, xz2) ∈ I=.

There exists a Mall ideal c = (y2−xz, x2, xy, xz2) ∈ I= such that inrlex c = b and
inhlex c = lf . Moreover, there exists a Mall ideal d = (y2z− xt2, x2, xy, xz, y3) ∈ I=
such that inrlex d = lf and (inhlex d)sat = lq. Hence, we get the following picture:

I= I≥

(y2−xz,x2,xy,xz2)

jjjjjj
UUUUUU (y2z−xt2,x2,xy,xz,y3)

hhhhhhh
TTTTTT

(x2,xy,y2,xz2) (x2,xy,xz,y3,y2z) (x,y3,y2z2)

Mall ideals have a lot of nice properties. In particular, they are generated by
monomials and by binomials. The generating binomials are homogeneous with
respect to the standart Z-grading of S, and furthermore they are parallel. That
means that there exists ρ ∈ Zn such that they are homogeneous with respect to
the Zn/ρZ-grading of S. Hence Mall ideals are edge ideals in the sense of [1]. In
section 2.2 we show that Mall ideals are sequentially Cohen-Macaulay. In section
2.3 we show that the initial ideal of a Mall ideal coincides with its generic initial



HILBERT SCHEME STRATA DEFINED BY BOUNDING COHOMOLOGY 9

ideal. For those two facts we need some combinatorial properties of Mall ideals
which are stated in section 2.1.

2.1. Binomial systems. D. Mall formulated his algorithm in a purely combina-
torial language. So, we want to go into the combinatorial details of [15]. We use
the notations of section 1.1.

Definition 2.5. A triple (A,C, ρ) consisting of two subsets A,C ⊂ Nn
d and of an

n-tuple ρ ∈ Zn is called a binomial system (of degree d in n indeterminates) if the
following conditions hold:

(i) C + ρ ⊂ Nn
d ,

(ii) A ∩ C = A ∩ (C + ρ) = C ∩ (C + ρ) = ∅,
(iii) A ∪ C and A ∪ (C + ρ) are Borel sets.

Remark 2.6. If (A,C, ρ) is a binomial system, we always assume that it is of
degree d in n indeterminates unless otherwise stated.

If (A,C, ρ) is a binomial system with C 6= ∅, then property (i) implies that
ρ1 + · · ·+ ρn = 0.

If (A,C, ρ) is a binomial system, then A is a Borel set.
If (A,C, ρ) is a binomial system, then for any term order of Nn we have:

If c < c + ρ for some c ∈ C, then c < c + ρ for all c ∈ C.
If (A,C, ρ) is a binomial system, then (A,C + ρ,−ρ) is also a binomial system.

Hence if C 6= ∅, we always may assume that ρm(ρ) > 0.

Notation 2.7. If C ⊂ Nn and ρ ∈ Zn are such that C + ρ ⊂ Nn, set

Bin(C, ρ) := {Xc −Xc+ρ ∈ S | c ∈ C}.

If (A,C, ρ) is a binomial system, define the ideal

F (A,C, ρ) := (XA ∪ Bin(C, ρ)).

Example 2.8. Let n := 4, d := 3, A := {(3, 0, 0, 0), (2, 1, 0, 0), (2, 0, 1, 0), (2, 0, 0, 1),
(1, 2, 0, 0), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 2, 0), (0, 3, 0, 0), (0, 2, 1, 0)}, C := {(0, 2, 0, 1)},
ρ := (1,−2, 1, 0). Then (A,C, ρ) is a binomial system. The saturation of the ideal

F (A,C, ρ) = (x3, x2y, x2z, x2t, xy2, xyz, xyt, xz2, y3, y2z, y2t− xzt) ⊂ K[x, y, z, t]

is the Mall ideal c = (y2 − xz, x2, xy, xz2) of Example 2.4.

It is very easy to compute Gröbner bases of ideals generated by binomial systems
and of their saturations:

Proposition 2.9. Let (A,C, ρ) be a binomial system.
a) XA ∪ Bin(C, ρ) is a Gröbner basis of F (A,C, ρ) with respect to the reverse

lexicographic order. Especially, if ρm(ρ) > 0, then inrlex F (A,C, ρ) = (XA∪C).
b) F (A,C, ρ)sat = (F (A,C, ρ) : X∞

n ).
c) If ρm(ρ) > 0, then XA∗ ∪ Bin(C∗, ρ) is a Gröbner basis of F (A,C, ρ)sat with

respect to the reverse lexicographic order.

Proof. The first two properties are shown in [15, 3.7(1)] and [15, 3.8]. Assertion
c) follows from a), b) and the characteristic property of the reverse lexicographic
order (cf. [21, 12.1]). �

The following definition is crucial for section 2.3.
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Definition 2.10. A binomial system (A,C, ρ) is good if bi = ci for all 1 ≤ i < m(ρ)
and for all b, c ∈ C.

Mall did not state the following fact explicitly. It is proved in detail in section
2.1 of [7].

Proposition 2.11. Let c ⊂ S be a Mall ideal. Then there exists d ∈ N and
a good binomial system (A,C, ρ) of degree d in n indeterminates such that c =
F (A,C, ρ)sat.

2.2. Sequentially Cohen-Macaulayness. In [13, 2.2] J. Herzog and E. Sbarra
showed that in characteristic zero the Borel ideals are sequentially Cohen-Macaulay.
Later J. Herzog, D. Popescu, and M. Vladoiu [12] generalized this result to mono-
mial ideals of Borel type in any characteristic of K. An ideal b ⊂ S is of Borel
type if (b : X∞

j ) = (b :S 〈X1, . . . , Xj〉∞S ) for all 1 ≤ j ≤ n. It is well known that
Borel-fixed ideals are of Borel type ([6, 15.24]). Since an ideal F (A,C, ρ) gener-
ated by a good binomial system is fixed under the action of the unipotent group
(cf. Proposition 2.26), it is not so surprising that F (A,C, ρ) is sequentially Cohen-
Macaulay. Indeed F (A,C, ρ) is sequentially Cohen-Macaulay, even if (A,C, ρ) is
not good (cf. Proposition 2.17).

Definition 2.12. A homogeneous ideal a ⊂ S is sequentially Cohen-Macaulay if
there exists a finite filtration

a = a0 ( a1 ( · · · ( ar = S

by homogeneous ideals such that
(i) ai/ai−1 is Cohen-Macaulay for all 1 ≤ i ≤ r,
(ii) dim(ai/ai−1) < dim(ai+1/ai) for all 1 ≤ i < r.

Given a binomial system (A,C, ρ), we construct a filtration

F (A,C, ρ) = F0 ⊂ F (A,C, ρ)sat = F1 ⊂ · · · ⊂ Fn = S

of ideals such that the quotients Fi+1/Fi are zero or Cohen-Macaulay of dimension
i for all 0 ≤ i < n (Proposition 2.16). There is a natural way to define the this
filtration:

Notation 2.13. For i ∈ N let S(i) denote the polynomial ring K[X1, . . . , Xi] and
let Ti be the set of monomials of S(i). In particular, S(n) = S and Tn = T. For
i < j one has a canonical inclusion S(i) ⊂ S(j). If i ∈ N and M ⊂ S(i), we write
〈M〉S(i) for the ideal in S(i) generated by M .

For A ⊂ Nn and 1 ≤ i ≤ n set

Ai := {(a1, . . . , ai) ∈ Ni | (a1, . . . , ai, 0, . . . , 0) ∈ A}.
Let (A,C, ρ) be a binomial system. Set

F0 := F (A,C, ρ).

For 1 ≤ i ≤ n−m(ρ) + 1 set

Fi := (F (A,C, ρ) ∩ S(n−i+1))satS.

For n−m(ρ) + 2 ≤ i ≤ n set

Fi :=
(
(inrlex F (A,C, ρ)) ∩ S(n−i+1)

)sat
S.
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It is easy to see that F0 ⊂ · · · ⊂ Fn−m(ρ)+1 and Fn−m(ρ)+2 ⊂ · · · ⊂ Fn

(cf. Lemma 2.15). The essential point is to show that Fn−m(ρ)+1 ⊂ Fn−m(ρ)+2

and that Fn−m(ρ)+2/Fn−m(ρ)+1 is Cohen-Macaulay.

The following Lemma is crucial, because it allows us to compute the generators
and the initial ideals of all ideals Fi.

Lemma 2.14. Let (A,C, ρ) be a binomial system with ρm(ρ) > 0, and let m(ρ) ≤
i ≤ n. Then

X(Ai)
∗
∪ Bin((Ci)∗, (ρ1, . . . , ρi))

is a Gröbner basis of (F (A,C, ρ) ∩ S(i))sat with respect to the reverse lexicographic
order of Ti.

Proof. Since (Ai, Ci, (ρ1, . . . , ρi)) is a binomial system of degree d in i indetermi-
nates, by Proposition 2.9 c) the set X(Ai)

∗ ∪ Bin((Ci)∗, (ρ1, . . . , ρi)) is a Gröbner
basis of F (Ai, Ci, (ρ1, . . . , ρi))sat with respect to the reverse lexicographic order of
Ti. To complete the proof it is enough to show that

F (A,C, ρ) ∩ S(i) = F (Ai, Ci, (ρ1, . . . , ρi)).

Since m(ρ) ≤ i, the inclusion “⊃” is obvious.
Let f ∈ F (A,C, ρ) ∩ S(i) = 〈XA ∪ Bin(C, ρ)〉S ∩ S(i), and write

f =
r∑

j=1

ujX
aj +

s∑
i=j

vj(Xcj −Xcj+ρ)

with u1, . . . , ur, v1, . . . , vs ∈ T and a1, . . . , ar ∈ A, c1, . . . , cs ∈ C. It follows from
m(ρ) ≤ i, that Xc ∈ S(i) if and only if Xc+ρ ∈ S(i) for all c ∈ C. Since f ∈ S(i),
we may assume that Xaj , Xcj −Xcj+ρ ∈ S(i) for all j. This shows

f ∈ 〈XAi ∪ Bin(Ci, (ρ1, . . . , ρi))〉S(i) = F (Ai, Ci, (ρ1, . . . , ρi)),

and the proof is finished. �

Lemma 2.15. Let (A,C, ρ) be a binomial system with ρm(ρ) > 0, and put m :=
m(ρ). Then

a) Fi = (Fi ∩ S(n−i))S ∀ i ∈ {0, . . . , n} \ {n−m + 1},
b) Fi+1 = (Fi ∩ S(n−i))satS ∀ i ∈ {0, . . . , n− 1}\{n−m + 1},
c) (F (A,C, ρ) ∩ S(m))sat ⊂

(
(inrlex F (A,C, ρ)) ∩ S(m−1)

)sat
S(m),

d) Fi ⊂ Fi+1 for all 0 ≤ i < n.
e) {X1, . . . , Xm−1} ⊂√(

(F (A,C, ρ) ∩ S(m))sat :
S(m)

(
(inrlex F (A,C, ρ)) ∩ S(m−1)

)sat
S(m)

)
.

f) Let u ∈ Tm. Then u /∈ inrlex(F (A,C, ρ) ∩ S(m))sat implies

Xmu /∈ inrlex(F (A,C, ρ) ∩ S(m))sat.

Proof. a) Let i ∈ {0, . . . , n} \ {n − m + 1}. If i > n − m + 1, then by Remark
1.11 the ideal Fi =

(
(inrlex F (A,C, ρ)) ∩ S(n−i+1)

)sat
S is generated in S(n−i) since

(inrlex F (A,C, ρ)) ∩ S(n−i+1) ⊂ S(n−i+1) is a Borel ideal by Proposition 2.9 a).
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If n−i+1 > m, then by Lemma 2.14 we have Fi = (F (A,C, ρ)∩S(n−i+1))satS =〈
X(An−i+1)

∗ ∪ Bin((Cn−i+1)∗, (ρ1, . . . , ρn−i+1))
〉

S(n−i+1)
S. Since ρn−i+1 = 0, the

latter ideal is also generated in S(n−i).

b) Let i ∈ {0, . . . , n− 1} \ {n−m + 1}. Set

a :=

{
F (A,C, ρ), if i < n−m + 1;
inrlex F (A,C, ρ), otherwise.

Since i 6= n−m + 1 we have Fi = (a ∩ S(n−i+1))satS and Fi+1 = (a ∩ S(n−i))satS.
It follows that

Fi+1 = (a ∩ S(n−i))satS = ((a ∩ S(n−i+1)) ∩ S(n−i))satS

= ((a ∩ S(n−i+1))sat ∩ S(n−i))satS = (Fi ∩ S(n−i))satS.

c) Set b :=
(
(inrlex F (A,C, ρ)) ∩ S(m−1)

)sat
S(m). We first prove the following

claim
X(Am)∗ ∪X(Cm)∗ ∪X(Cm)∗+(ρ1,...,ρm) ⊂ b.

Let b ∈ (Am)∗ ∪ (Cm)∗ ∪ ((Cm)∗ + (ρ1, . . . , ρm)).
Case 1: b ∈ (Am)∗ ∪ (Cm)∗. Then there exists a ∈ A ∪ C such that b =

(a1, . . . , am−1, 0) and m(a) ≤ m. Let a′ := a + am(em−1 − em). Since A ∪ C is a
Borel set, we have a′ ∈ A ∪ C. Hence (a1, . . . , am−2, am−1 + am) ∈ (A ∪ C)m−1

and (a1, . . . , am−2, 0) ∈ ((A ∪ C)m−1)∗. By Remark 1.11 and Proposition 2.9 a) it
follows that X(a1,...,am−2,0) ∈ 〈X(A∪C)m−1〉satS(m−1)

⊂
(
(inrlex F (A,C, ρ))∩S(m−1)

)sat
,

and therefore, Xb = X
am−1
m−1 X(a1,...,am−2,0,0) ∈ b.

Case 2: b ∈ (Cm)∗ + (ρ1, . . . , ρm). Then there exists c ∈ C such that b =
(c1, . . . , cm−1, 0) + (ρ1, . . . , ρm). By similar arguments to those used in case 1 we
obtain a′ := c+ρ+(c+ρ)m(em−1−em) ∈ A∪ (C +ρ). Now, m(a′) = m−1 implies
a′ ∈ A, and therefore X(c1,...,cm−2,0)+(ρ1,...,ρm−2,0) ∈

(
(inrlex F (A,C, ρ))∩S(m−1)

)sat
.

It follows again that Xb = X
(c+ρ)m−1
m−1 Xρm

m X(c1,...,cm−2,0,0)+(ρ1,...,ρm−2,0,0) ∈ b, and
our claim is proved.

Now we get our statement by means of Lemma 2.14:

(F (A,C, ρ) ∩ S(m))sat = 〈X(Am)∗ ∪ Bin((Cm)∗, (ρ1, . . . , ρm))〉S(m)

⊂ 〈X(Am)∗ ∪X(Cm)∗ ∪X(Cm)∗+(ρ1,...,ρm)〉S(m) ⊂ b.

d) This statement follows immediately from a), b), and c).

e) By Proposition 2.9 a) and Remark 1.11 it holds(
(inrlex F (A,C, ρ)) ∩ S(m−1)

)sat = (〈XA∪C〉S ∩ S(m−1))sat

= 〈X((A∪C)m−1)
∗
〉S(m−1) .

Without loss of generality we may assume that Am−1 6= ∅ and set

r := max {am−1 ∈ N | a ∈ (A ∪ C)m−1}+ ρm.

Let 1 ≤ i < m. It is enough to show that

Xr
i 〈X((A∪C)m−1)

∗
〉S(m−1)S(m) ⊂ (F (A,C, ρ) ∩ S(m))sat.

Let a ∈ (A ∪ C)m−1. Since (A ∪ C)m−1 is a Borel set, we have

c := am−1ei + a∗ = a + am−1(ei − em−1) ∈ (A ∪ C)m−1.
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Case 1: c ∈ Am−1. Then

X
am−1
i Xa∗ ∈ F (A,C, ρ) ∩ S(m−1) ⊂ (F (A,C, ρ) ∩ S(m))sat.

Case 2: c ∈ Cm−1. Then c′ := (c1, . . . , cm−1, 0, . . . , 0) ∈ C. Since (A∪(C+ρ)) is
a Borel set, we have b := c′+ρ+ρm(ei−em) ∈ A∪(C+ρ). It is clear that m(b) < m,
whence b ∈ A. It follows that X

am−1+ρm

i Xa∗ = xρm

i (Xc′ − Xc′+ρ) + Xρm
m Xc ∈

F (A,C, ρ) ∩ S(m) ⊂ (F (A,C, ρ) ∩ S(m))sat.
In both cases our claim follows.

f) From Lemma 2.14 it follows that

inrlex(F (A,C, ρ) ∩ S(m))sat = 〈X(Am∪Cm)∗〉S(m) .

Thus, if Xmu ∈ inrlex(F (A,C, ρ) ∩ S(m))sat, there exists b ∈ (Am ∪ Cm)∗ such
that Xb divides Xmu. Since Xb is not divisible by Xm, it has to divide u. Hence
u ∈ inrlex(F (A,C, ρ) ∩ S(m))sat. �

Proposition 2.16. Let (A,C, ρ) be a binomial system, and let 0 ≤ i < n. Then
Fi+1/Fi is zero or Cohen-Macaulay of dimension i.

Proof. Let m := m(ρ). By Remark 2.6 we may assume that ρm > 0. Assume first
that i 6= n−m + 1. Set a := Fi ∩ S(n−i). Then by Lemma 2.15 a) and b) we have
Fi = a S and Fi+1 = asatS. It follows that

Fi+1/Fi = asatS/a S = (asat/a)⊗S(n−i) S = H1
(S(n−i))+

(a)⊗S(n−i) S.

The (finitely generated) S(n−i)-module H1
(S(n−i))+

(a) is Artinian, therefore it is zero
or Cohen-Macaulay and zero-dimensional. Thus, the S-module Fi+1/Fi is zero or
Cohen-Macaulay of dimension i (cf. [3, 2.1.9]).

We now prove our statement for i = n−m + 1. Set

a :=
(
(inrlex F (A,C, ρ)) ∩ S(m−1)

)sat
S(m),

b := (F (A,C, ρ) ∩ S(m))sat.
By Lemma 2.15 c) it holds b ⊂ a. Since

Fn−m+2/Fn−m+1 =
(
(inrlex F (A,C, ρ)) ∩ S(m−1)

)sat
S/(F (A,C, ρ) ∩ S(m))satS

= (a/b)⊗S(m) S,

it is enough to show that the S(m)-module a/b is zero or one-dimensional and
Cohen-Macaulay.

By Lemma 2.15 e) it holds

dim a/b = dim S(m)/(b :
S(m)

a) = dim S(m)/
√

(b :
S(m)

a)

≤ dim S(m)/〈X1, . . . , Xm−1〉S(m) = 1.

Thus, it is enough to show that Xm is a non-zerodivisor of a/b.
Lemma 2.15 f) states that Xm is a non-zerodivisor of S(m)/ inrlex b. Since any

non-zerodivisor of S(m)/ inrlex b is a non-zerodivisor of S(m)/b and hence of a/b,
our proof is finished. �

Cancelling the redundant ideals in the filtration F0 ⊂ F1 ⊂ · · · ⊂ Fn = S we get
the following statement:
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Proposition 2.17. Let (A,C, ρ) be a binomial system. Then the ideals F (A,C, ρ)
and F (A,C, ρ)sat are sequentially Cohen-Macaulay.

Together with Proposition 2.11 we have proved:

Theorem 2.18. Mall ideals are sequentially Cohen-Macaulay.

2.3. The generic initial ideal of a binomial ideal. Let (A,C, ρ) be a good
binomial system. Then the generic initial ideal of F (A,C, ρ) and the initial ideal of
F (A,C, ρ) with respect to any admissible term order coincide (Proposition 2.27).
This conclusion is not at all trivial: It does not hold if (A,C, ρ) is not good (s. Ex-
ample 2.29). The crucial point is that F (A,C, ρ) is fixed under the action of the
unipotent group, if (A,C, ρ) is good (Proposition 2.26). In the following we will
prove this statement.

In case the binomial system (A,C, ρ) is good, we want to compute g(f) if f is a
generator of the ideal F (A,C, ρ) and g ∈ U is unipotent. To do this, we introduce
generic coordinates for g:

Notation 2.19. Set T := K[Yij | 1 ≤ i ≤ j ≤ n].
Define the automorphism of T -algebras

φ : T [X1, . . . , Xn] → T [X1, . . . , Xn]

by φ(Xj) :=
∑j

i=1 YijXi.
Let g = [gij | 1 ≤ i ≤ n, 1 ≤ j ≤ n] ∈ K(n,n) be a matrix. Then we denote by

ḡ : T [X1, . . . , Xn] → S the homomorphism of S-algebras defined by ḡ(Yij) := gij

for 1 ≤ i ≤ j ≤ n.
For a ∈ Nn set ga :=

∏n
i=1 gai

ii and Y a :=
∏n

i=1 Y ai
ii .

For M ∈ N(n,n) set Y M :=
∏

1≤i≤j≤n Y
Mij

ij .
For ρ ∈ Zn and M ∈ Z(n,n) let M +ρ ∈ Z(n,n) denote the matrix which is defined

by

(M + ρ)ij :=

{
Mij , if i 6= j;
Mii + ρi, otherwise.

For a, b ∈ Nn set

U(a, b) := {M ∈ U(n) |
n∑

i=1

Mji = aj ,
n∑

i=1

Mij = bj ∀ 1 ≤ j ≤ n},

where U(n) is defined as in 1.6.

Remark 2.20. Let a, b ∈ Nn. Then by Lemma 1.12: a ≥Bor b ⇐⇒ U(a, b) 6= ∅.

Lemma 2.21. Let b, c ∈ Nn
d and ρ ∈ Zn be such that b + ρ, c + ρ ∈ Nn

d and such
that bi = ci for all 1 ≤ i < m(ρ).

a) Let b ≥Bor c and M ∈ U(b, c). Then Mjj = cj for 1 ≤ j ≤ m(ρ).
b) Let b ≥Bor c and M ∈ U(b, c). Then Mjj + ρj ≥ 0 for 1 ≤ j ≤ n.
c) Let M ∈ Z(n,n). Then M ∈ U(b, c) ⇐⇒ M + ρ ∈ U(b + ρ, c + ρ).

Proof. a) We use an inductive argument. It is clear that M11 =
∑n

i=1 Mi1 = c1.
Let 1 < j ≤ m(ρ) and assume that ck = Mkk for all 1 ≤ k < j. We have
Mkk = ck = bk =

∑n
i=1 Mki for 1 ≤ k < j and therefore Mkj = 0 for 1 ≤ k < j.

Since Mij = 0 for all i > j, it holds cj =
∑n

i=1 Mij = Mjj .
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b) This statement follows from statement a) and from the condition cj + ρj ≥ 0
for 1 ≤ j ≤ n.

c) Let M ∈ U(b, c). Then part b) states that M + ρ ∈ U(n). Since

(b + ρ)j = bj + ρj =
n∑

i=1

Mji + ρj =
n∑

i=1

(M + ρ)ji

and

(c + ρ)j = cj + ρj =
n∑

i=1

Mij + ρj =
n∑

i=1

(M + ρ)ij

for all 1 ≤ j ≤ n, it holds M + ρ ∈ U(b + ρ, c + ρ).
In order to prove the converse implication, one just has to replace b, c, ρ with

b + ρ, c + ρ, −ρ respectively. �

Notation 2.22. For m and m1, . . . ,mn ∈ N with m =
∑n

i=1 mi set(
m

m1, . . . ,mn

)
:=

m!
m1! · · ·mn!

.

For M ∈ N(n,n) set

µM :=
n∏

j=1

( ∑n
i=1 Mij

M1j , . . . ,Mnj

)
.

For a, b ∈ Nn
d let αb

a ∈ T be the coefficient of Xa in the polynomial φ(Xb), so
that φ(Xb) =

∑
a∈Nn

d
αb

aXa.
For b, c ∈ Nn

d and ρ ∈ Zn such that b + ρ, c + ρ ∈ Nn
d and such bi = ci for all

1 ≤ i < m(ρ) set
pρ

b,c :=
∑

M∈U(b,c)

µMY M−ρ− ,

where ρ− is defined according to 1.6.

Remark 2.23. Let b, c ∈ Nn
d and ρ ∈ Zn be such that b + ρ, c + ρ ∈ Nn

d and such
bi = ci for all 1 ≤ i < m(ρ). Then for all M ∈ U(b, c) we have by Lemma 2.21 b)
that Mjj + ρj ≥ 0 for 1 ≤ j ≤ n, whence Y M−ρ− ∈ T [X1, . . . , Xn]. Therefore, pρ

b,c

is a polynomial in T [X1, . . . , Xn].
If b 6≥Bor c, then pρ

b,c = 0 by Remark 2.20.

Lemma 2.24. Let a, b ∈ Nn
d . Then αb

a =
∑

M∈U(a,b) µMY M . In particular a ≥Bor b

if and only if αb
a 6= 0.

Proof. From the multinomial formula it follows∑
a∈Nn

d

αb
aXa = φ(Xb) =

n∏
j=1

( j∑
i=1

YijXi

)bj

=
n∏

j=1

∑
k1, ..., kj∈N

k1+···+kj=bj

(
bj

k1, . . . , kj

) j∏
i=1

(YijXi)ki

=
∑

k11, k12, k22, ..., k1n, ..., knn∈NPj
i=1 kij=bj ∀ 1≤j≤n

n∏
j=1

(
bj

k1j , . . . , kjj

) j∏
i=1

(YijXi)kij
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=
∑

M∈U(n)Pn
i=1 Mij=bj ∀ 1≤j≤n

n∏
j=1

(
bj

M1j , . . . ,Mnj

) j∏
i=1

(YijXi)Mij

=
∑

M∈U(n)Pn
i=1 Mij=bj ∀ 1≤j≤n

µM

∏
1≤i≤j≤n

Y
Mij

ij X
Mij

i

=
∑

M∈U(n)Pn
i=1 Mij=bj ∀ 1≤j≤n

µMY M
n∏

i=1

X
Pn

j=1 Mij

i

=
∑

M∈U(n)Pn
i=1 Mij=bj ∀ 1≤j≤n

µMY MX(
Pn

j=1 M1j ,...,
Pn

j=1 Mnj).

Hence we get

αb
a =

∑
M∈U(n)Pn

i=1 Mij=bj ∀ 1≤j≤nPn
j=1 Mij=ai ∀ 1≤i≤n

µMY M =
∑

M∈U(a,b)

µMY M .

In particular, a ≥Bor b ⇐⇒ U(a, b) 6= ∅ ⇐⇒ αb
a 6= 0, by Remark 2.20. �

Lemma 2.25. Let b, c ∈ Nn
d and ρ ∈ Zn be such that b + ρ, c + ρ ∈ Nn

d and bi = ci

for all 1 ≤ i < m(ρ). Then αc
b = pρ

b,c Y ρ− and αc+ρ
b+ρ = pρ

b,c Y ρ+
.

Proof. If b 6≥Bor c, then αc
b = αc+ρ

b+ρ = 0 by Lemma 2.24 and pρ
b,c = 0 by Remark

2.23. Hence, we can assume that b ≥Bor c. The first equation follows immediately
from Lemma 2.24. To prove the second one, we first claim that µM = µM+ρ for all
M ∈ U(b, c). Let M ∈ U(b, c). Let 1 ≤ j ≤ n. If j ≤ m(ρ) we have by part a) of
Lemma 2.21 that(

cj

M1j , . . . ,Mnj

)
=

cj !
Mjj !

= 1 =
(cj + ρj)!

(Mjj + ρj)!
=

(
cj + ρj

(M + ρ)1j , . . . , (M + ρ)nj

)
.

If j > m(ρ) we have
(

cj

M1j ,...,Mnj

)
=

( cj+ρj

(M+ρ)1j ,...,(M+ρ)nj

)
. Our claim now follows

from the definition of µM and µM+ρ.
By Lemma 2.24 and 2.21 c) we get

αc+ρ
b+ρ =

∑
M∈U(b+ρ,c+ρ)

µM+ρY
M+ρ =

∑
M∈U(b,c)

µMY M−ρ−+ρ+
= pρ

b,c Y ρ+
.

�

Proposition 2.26. Let (A,C, ρ) be a good binomial system and g ∈ U an unipotent
matrix. Then g(F (A,C, ρ)) = F (A,C, ρ).

Proof. If C = ∅, the statement follows from the fact that the ideal (XA) is Borel-
fixed (s. Proposition 1.14).

Now let C 6= ∅ and c := minrlex C. Then (A,C \ {c}, ρ) is again a good binomial
system (cf. Lemma 1.8). Since g(F (A,C, ρ)) = (g(XA ∪ Bin(C, ρ)), it is enough to
show the following equality of K-vectorspaces:

〈g(XA ∪ Bin(C, ρ))〉K = 〈XA ∪ Bin(C, ρ)〉K .
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Hence it is enough to show that

g(XA ∪ Bin(C, ρ)) ⊂ 〈XA ∪ Bin(C, ρ)〉K .

By induction on #C we may assume that g(F (A,C \ {c}, ρ)) = F (A,C \ {c}, ρ),
whence

g(XA ∪ Bin(C \ {c}, ρ)) ⊂ 〈XA ∪ Bin(C, ρ)〉K .

Therefore, it is enough to show that

g(Xc −Xc+ρ) ∈ 〈XA ∪ Bin(C, ρ)〉K .

In the following we make use of the Notations 2.19 and 2.22. Observe that
ḡ(Y ρ−) = gρ− = 1 and ḡ(Y ρ+

) = gρ+
= 1 as g is unipotent. Since (A,C, ρ) is good,

we may apply Lemma 2.25 to compute

g(Xc −Xc+ρ) = ḡ(φ(Xc −Xc+ρ))

= ḡ
( ∑
a∈Nn

d

αc
aXa −

∑
a∈Nn

d

αc+ρ
a Xa

)
= ḡ

( ∑
a≥Borc

αc
aXa −

∑
a≥Borc+ρ

αc+ρ
a Xa

)
= ḡ

( ∑
a∈A

a>Borc

αc
aXa −

∑
a∈A

a>Borc+ρ

αc+ρ
a Xa

)
+ ḡ

( ∑
a∈C

a≥Borc

αc
aXa −

∑
a∈C+ρ

a≥Borc+ρ

αc+ρ
a Xa

)
(1.9)
= ḡ

(∑
a∈A

αc
aXa −

∑
a∈A

αc+ρ
a Xa

)
+ ḡ

(∑
b∈C

(αc
bX

b − αc+ρ
b+ρX

b+ρ)
)

(2.25)
= ḡ

(∑
a∈A

(αc
a − αc+ρ

a )Xa
)

+ ḡ
(∑
b∈C

(pρ
b,c Y ρ−Xb − pρ

b,c Y ρ+
Xb+ρ)

)
=

∑
a∈A

ḡ(αc
a − αc+ρ

a )Xa +
∑
b∈C

ḡ(pρ
b,c)

(
ḡ(Y ρ−)Xb − ḡ(Y ρ+

)Xb+ρ
)

=
∑
a∈A

ḡ(αc
a − αc+ρ

a )Xa +
∑
b∈C

ḡ(pρ
b,c)(X

b −Xb+ρ).

Hence our Proposition is proved. �

Now, it follows immediately from Corollary 1.15:

Proposition 2.27. Let (A,C, ρ) be a good binomial system and τ an admissible
term order. Then Ginτ F (A,C, ρ) = inτ F (A,C, ρ). �

As a further consequence we have by Proposition 2.11 and Proposition 1.16:

Theorem 2.28. If c ⊂ S is a Mall ideal, then Ginrlex c = inrlex c.

We conclude this section with a example which shows that Proposition 2.27 fails
if the binomial system (A,C, ρ) is not good:

Example 2.29. Consider the ring R := K[X1, . . . , X5] = K[x, y, z, t, u]. Let ρ :=
(1,−2, 2,−2, 1), b := (0, 2, 0, 3, 0), c := (0, 2, 0, 2, 1) and C := {b, c}. Let B ⊂ N5

5

be the smallest Borel set containing D := C ∪ (C + ρ) and set A := B \D. Then
(A,C, ρ) is a binomial system. Let a := F (A,C, ρ). We then compute:
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Ginrlex a = (x5, x4y, x3y2, x2y3, xy4, y5, x4z, x3yz, x2y2z, xy3z, y4z, x3z2,

x2yz2, xy2z2, y3z2, x2z3, xyz3, y2z3, xz4, x4t, x3yt, x2y2t,

xy3t, y4t, x3zt, x2yzt, xy2zt, y3zt, x2z2t, xyz2t, y2z2t, xz3t,

x3t2, x2yt2, xy2t2, y3t2, x2zt2, xyzt2, y2zt2, xz2t2, x2t3, xyt3, y2t3,

x4u, x3yu, x2y2u, xy3u, y4u, x3zu, x2yzu, xy2zu, y3zu, x2z2u,

xyz2u, y2z2u, xz3u, x3tu, x2ytu, xy2tu, y3tu, x2ztu, xyztu,

y2ztu, xz2tu, x2t2u, xyt2u, x3u2, x2yu2, xy2u2, x2zu2, xyzu2),

inrlex a = (x5, x4y, x3y2, x2y3, xy4, y5, x4z, x3yz, x2y2z, xy3z, y4z, x3z2,

x2yz2, xy2z2, y3z2, x2z3, xyz3, y2z3, xz4, x4t, x3yt, x2y2t,

xy3t, y4t, x3zt, x2yzt, xy2zt, y3zt, x2z2t, xyz2t, y2z2t, xz3t,

x3t2, x2yt2, xy2t2, y3t2, x2zt2, xyzt2, y2zt2, xz2t2, x2t3, xyt3, y2t3,

x4u, x3yu, x2y2u, xy3u, y4u, x3zu, x2yzu, xy2zu, y3zu, x2z2u,

xyz2u, y2z2u, xz3u, x3tu, x2ytu, xy2tu, y3tu, x2ztu, xyztu,

y2ztu, x2t2u, xyt2u, y2t2u, x3u2, x2yu2, xy2u2, x2zu2, xyzu2).

These ideals are not equal, as is indicated by the underlined generators. The
reason is the following: Let M ∈ N(5,5) be the unique element of U(b, c). Then
M55 = 0 6= c5, but m(ρ) = 5 (counterexample to part (a) of Lemma 2.21). We
cannot conclude that µM equals µM+ρ; indeed µM = 1 and µM+ρ = 2. It follows
that αc+ρ

b+ρ = 2pρ
b,cY

ρ+
(counterexample to Lemma 2.25). Let g ∈ Gl(5,K) be

unipotent. We then compute

g(Xc −Xc+ρ) = Xc −Xc+ρ + ḡ(pρ
b,c)(X

b − 2Xb+ρ) +
∑
a∈A

ḡ(αc
a − αc+ρ

a )Xa

/∈ 〈XA ∪ Bin(C, ρ)〉K
(counterexample to Proposition 2.26). A further computation yields

g(Xb −Xb+ρ) = Xb −Xb+ρ +
∑
a∈A

ḡ(αb
a − αb+ρ

a )Xa.

Since A is a Borel set, it is clear that XA ⊂ g(F (A,C, ρ)), whence Xb − Xb+ρ,
Xb−2Xb+ρ + ḡ(pρ

b,c)
−1(Xc−Xc+ρ) ∈ g(F (A,C, ρ)). Since b >rlex c we get Xb+ρ ∈

Ginrlex F (A,C, ρ) \ inrlex F (A,C, ρ) and Xc ∈ inrlex F (A,C, ρ) \Ginrlex F (A,C, ρ).

3. Application to Hilbert function strata

Let p ∈ Q[t] be a polynomial. The Hilbert scheme Hilbp = Hilbp
Pn
K

is defined
to be the representing scheme of the Hilbert functor Hilbp

Pn
K

: SchK → Set which
assigns to each locally Noetherian scheme T over K the set of all closed subschemes
W ⊂ Pn

K × T , flat over T such that for every point x ∈ T the fibre Wx of W over x
has Hilbert polynomial p (cf. [9], [20]). The Hilbert scheme is characterized by the
following

Universal Property 3.1. There exists a universal closed subscheme WHilb ⊂
Pn
K ×Hilbp, flat over Hilbp with Hilbert polynomial p in all fibres such that for every
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locally Notherian K-scheme T and for every closed subschemes W ⊂ Pn
K × T , flat

over T with Hilbert polynomial p in all fibres there exists a unique morphism of
K-schemes g : T → Hilbp such that W = WHilb ×Hilbp T is the pullback of the
universal subscheme by g.

For each point x ∈ Hilbp
K let κ(x) denote the residue field of x on Hilbp and

set Wx := WHilb ×Hilbp Spec(κ(x)) ∈ Hilbp
K(Spec(κ(x))). Furthermore let I(x) ⊂

OPn
κ(x)

denote the associated coherent ideal sheaf. It has Hilbert polynomial q(t) :=(
t+n
n

)
− p(t).

Definition 3.2. For i ∈ N and x ∈ Hilbp define the ith cohomological Hilbert
function

hi
x : Z → N, m 7→ dimκ(x) Hi

(
Pn
κ(x), I

(x)(m)
)
.

Fix a sequence (fi)i∈N of numerical functions fi : Z → N. Then by the Semicon-
tinuity Theorem

H≥ := H≥
Pn
K

:= {x ∈ Hilbp | hi
x ≥ fi ∀ i ∈ N}

is a closed subspace of Hilbp and

H= := H=
Pn
K

:= {x ∈ Hilbp | h0
x = f0, hi

x ≥ fi ∀ i ≥ 1}

is a locally closed subspace of Hilbp.
In the rest of this section we prove that H≥ and H= are connected. Therefore,

we redefine the polynomial ring S by S := K[X0, . . . , Xn], where K is a field of
characteristic zero as before.

Notation 3.3. Define

I= :=
{

a ⊂ S
∣∣∣ a is a saturated homogeneous ideal with

ha = f0 and hi
a ≥ fi−1 for all i ≥ 2

}
,

I≥ :=
{

a ⊂ S
∣∣∣ a is a saturated homogeneous ideal with Hilbert poly-

nomial q such that ha ≥ f0 and hi
a ≥ fi−1 for all i ≥ 2

}
,

where hi
a : Z → N, m 7→ dimK Hi

S+
(a)m denotes the i-th locally cohomological

Hilbert function of a.

Proposition 3.4. The sets I= and I≥ are connected by Gröbner deformations.

Proof. Let a ∈ I= and apply Proposition 2.1 to find two sequences of Mall ideals
c1, . . . , cr and d1, . . . , ds with the appropriate properties.

By [18] we know that hi
c ≤ hi

(inhlex c)sat for all i ≥ 2 and all homogeneous ideals
c ⊂ S. Since Mall ideals are sequentially Cohen-Macaulay (Theorem 2.18), we know
by [13] and (Theorem 2.28) that hi

c = hi
(inrlex c)sat for all i ≥ 2 and all Mall ideals

c ⊂ S. Hence we get the situation

I= I≥

a

≤
66

66

c1

=		

		
≤
55

55

c2

=��

��

... cr

≤
66

66

d1

=��

��
<
66

66

d2

=��
��

... ds

<
22

22

Ginrlex a

=inrlex c1

inhlex c1

=inrlex c2

inhlex cr=

lf0=inrlex d1

(inhlex d1)
sat

=inrlex d2

(inhlex ds)sat

=lq
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where the signs indicate the following:

“=”: The Hilbert function and the locally cohomological Hilbert functions remain
constant.

“≤”: The Hilbert function remains constant and the locally cohomological Hilbert
functions do not decrease.

“<”: The Hilbert function increases and the locally cohomological Hilbert func-
tions do not decrease.

�

Theorem 3.5. The sets H≥ and H= are connected by lines.

Proof. Assume at first that the field K is algebraically closed. Then the closed
points of Hilbp are precisely the saturated homogeneous ideals of S with Hilbert
polynomial q. By the Serre-Grothendieck Correspondence the set of closed points
of H= equals I= and the set of closed points of H≥ equals I≥. By the previous
Proposition, the only fact to prove is the following:

Claim: Let a ⊂ S be a homogeneous ideal and τ a term order of S such that a,
inτ a ∈ I= or such that a, inτ a ∈ I≥. Then a and inτ a are connected by a line
which lies entirely in I=, I≥ respectively.

In fact, by means of weight orders, described for example in Chapter 15.8 of [6],
one constructs an ideal βz(a) ⊂ S[z] and a flat family S[z]/βz(a) over K[z] whose
fibre over 0 is S/ inτ a, and whose fibre over (z − u) for u ∈ K \ {0} is isomorphic
to S/a. A detailed scheme theoretic proof of the Claim may be found in section 3.3
of [7].

Now, assume that K is an arbitrary field of characterisic zero. Endow the locally
closed subspaces H≥

Pn
K

, H=
Pn
K
⊂ Hilbp

Pn
K

with the induced reduced scheme structure.
Let k be the algebraic closure of K. The proof is finished if we show:

Claim: H≥
Pn
k

∼= (H≥
Pn
K
×Spec(K) Spec(k))red and H=

Pn
k

∼= (H=
Pn
K
×Spec(K) Spec(k))red.

A detailed proof of this fact may be found in section 3.4 of [7]. Its idea is the
following: Define functors

H=
Pn
K

: Schred
K → Set, H≥

Pn
K

: Schred
K → Set

by assigning to each reduced K-scheme T the sets

H=
Pn
K

(T ) :=

{
W ∈ Hilbp

Pn
K

(T )

∣∣∣∣∣ If g : T → Hilbp is a morphism such that W is the
pull back of the universal subscheme HHilb by g,
then h0

g(x) = f0 and hi
g(x) ≥ fi ∀i ≥ 1 ∀x ∈ T .

}
,

H≥
Pn
K

(T ) :=

{
W ∈ Hilbp

Pn
K

(T )

∣∣∣∣∣ If g : T → Hilbp is a morphism such that W is the
pull back of the universal subscheme HHilb by g,
then hi

g(x) ≥ fi ∀i ∈ N ∀x ∈ T .

}
,

respectively. The functors H=
Pn
K

, H≥
Pn
K

are subfunctors of the Hilbert functor. It is

easily shown that H=
Pn
K

, H≥
Pn
K

are represented by the schemes H≥
Pn
K

, H=
Pn
K

, respectively.
Now, the claim follows from general nonsense (cf. [10, 0.1.3.10]). �
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[19] E. Sperner: Über einen kombinatorischen Satz von Macaulay und seine Anwendungen auf

die Theorie der Polynomideale, Abh. math. Sem. Univ. Hamburg 7 (1930), 149–163.
[20] S. A. Strømme: Elementary introduction to representable functors and Hilbert schemes, in P.

Pragacz (Ed.), Parameter Spaces, Banach Center Publications 36, Warszawa (1996), 179–198.
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