HILBERT SCHEME STRATA DEFINED BY BOUNDING
COHOMOLOGY

STEFAN FUMASOLI

ABSTRACT. Let Hilb? be the Hilbert scheme parametrizing the closed sub-
schemes of B? with Hilbert polynomial p € Q[t] over a field K of characteristic
zero. By bounding below the cohomological Hilbert functions of the points of
HilbP we define locally closed subspaces of the Hilbert scheme. The aim of
this paper is to show that some of these subspaces are connected. For this
we exploit the edge ideals constructed by D. Mall in [15]. It turns out that
these ideals are sequentially Cohen-Macaulay and that their initial ideals with
respect to the reverse lexicographic term order are generic initial ideals.

0. INTRODUCTION

Let Hilb? = Hilbﬂ’%? be the Hilbert scheme of projective space over a field K
with respect to a polynomial p € Q[t]. It is well known that Hilb? is connected
[11]. For each point = € Hilb? let hY : Z — N denote the Hilbert function of the
associated ideal sheaf Z(*) ¢ (’)sz' . Several approaches have been chosen to prove
that subsets of Hilb? which are (hlé%ned by bounding the functions h2 are connected
8], [15], [16], [17).

For 7 € N and x € Hilb? define the ith cohomological Hilbert function

hi i Z— N, m— dim, ) H (B, Z") (m)).

Fix a sequence (f;);en of numerical functions f; : Z — N. Then by the Semiconti-
nuity Theorem
HZ := Hg, == {x € Hilb” | h}, > f; Vi € N}
is a closed subspace of Hilb? and
=._ g= ._ qLP | B0 i vy
H™ := Hpn :={z € Hilb” [ hy = fo, hyy = fi Vi =1}
is a locally closed subspace of Hilb?. In this paper we show (cf. Theorem 3.5):

(0.1) H= and H= are connected if char K = 0.

We endow the subsets HZ and H= with the induced reduced scheme structure.
>

By flat base change and functorial arguments it follows that HIP],? = (H@? X i k)red
and HH,} o (H@ X i k)rea for any field extension K C k. Hence, it suffices to show

the connectedness of HZ and H= in the case when K is algebraically closed.
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From now on we assume that K is algebraically closed and of characteristic zero.
The closed points of Hilb” are precisely the saturated homogeneous ideals with
Hilbert polynomial ¢(t) := (tfln) —p(t) of the polynomial ring S := K[Xy,..., Xn]
For a homogeneous ideal a C S and i € N define the ith locally cohomological
Hilbert function

hi i Z— N, m— dimg H§_(a)m,

where H fg+ (a) denotes the (graded) ith local cohomology module of a with respect
to the irrelevant ideal S, := (Xy,..., X, ). Furthermore, let h, denote the Hilbert
function of a. By the Serre-Grothendieck Correspondence the cohomology modules
of sheaves correspond to local cohomology modules. Hence the set of closed points
of H= equals

= - { S‘ a is a saturated homogeneous ideal Wlth}
’ he = fo and hY > fi_; for all i > 2

and the set of closed points of HZ equals

- { c ’ a is a saturated homogeneous ideal with Hilbert poly—}
a nomial ¢ such that hq > fy and hg > fioqg foralli>2J°

A set I of saturated homogeneous ideals of S is said to be connected by Grobner
deformations if for any two ideals a, b € I there exists a sequence of ideals a =
€1, ..., ¢ = b in I such that ¢; is the saturation of the initial ideal or of the the
generic initial ideal of ¢;41 with respect to some term order or vice versa for all
i€ {1,...,7r—1}. We exploit the ideals constructed by D. Mall in [15] to show that
I= and IZ are connected by Grobner deformations. With techniques, described
in Chapter 15.8 of [6], one shows that connectedness by Grobner deformations
implies connectedness in sense of topology for the sets HZ and H~ (cf. proof of
Theorem 3.5).

To prove that a set I of saturated homogeneous ideals of S, defined by bounding
the locally cohomological Hilbert functions, is connected by Grobner deformations,
sequentially Cohen-Macaulay ideals (i.e. ideals a C S such that S/a is a sequentially
Cohen-Macaulay S-module) play an important role:

(0.2) Let a C S be a homogeneous ideal, and let Ginyex a be its generic im’_tz'al
tdeal with respect to the homogeneous reverse lexicographic order. Then hl, =
for all i € N if and only if a is sequentially Cohen-Macaulay (cf.

P
Ginglex @

[13])
On the other hand we always have:

(0.3) Let a C S be a homogeneous ideal. Then h% < hi . for all i € N with respect
to any term order on S (cf. [18]).

In his Habilitationsschrift of 1997, D. Mall showed that the two sets
I_ :={a C S| ais asaturated homogeneous ideal with hq = fo},

I> := {a C S | homogeneous, saturated, with Hilb. poly. ¢ and hy > fo}

are connected by Grobner deformations. Observe that 1= C I_, IZ C I> are
subsets. Indeed Mall described an algorithm providing the following fact:
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(0.4) Assume that I_ is not empty. Then there exists an ideal /o € I_, (a so
called growth-height-lexicographic ideal depending uniquely on fo, cf. [14]),
such that for each a € I there exists a sequence of ideals ¢q, ..., ¢ in I=
such that

L4 inrlex € = Ginrlex a,

® iNyjex ¢; = iNplex Ci—1 for alli € {2,... 1},

® iNpjex ¢ = (fo.

Moreover, there exists a sequence of ideals 91, ..., 05 in I> such that
inrlex 01 = [f07

Nyjex 0; = (inhlex Di_l)sat for alli e {2, ey 8},

(inhlex Ds)sat = [p7

Ringrex 0 = ho; < Ringree 0,)s¢ for all i € {1,...,s}.

where 11 denotes the unique saturated lexicographic ideal with Hilbert polyno-
mial q (cf. [15]).

I will call the ideals ¢; and 0; Mall ideals. These ideals have a lot of nice properties:
At first, they are generated by monomials and by homogeneous binomials. More
precisely, the binomials are all parallel. Hence Mall ideals are edge ideals (cf. [1]):
For every Mall ideal ¢ there exists p € Z"*1\ {0} with pg + -+ + p, = 0 such that
¢ is homogeneous with respect to the induced Z"*!/pZ-grading of S. In particular
they are edge providing: Any Mall ideal has exactly two initial ideals, namely one
with respect to the homogeneous lexicographic order >pjex and one with respect
to the homogeneous reverse lexicographic order >,jox. Moreover, these two initial
ideals are fized by the action of the Borel group.

In the main part of this paper we prove the following two statements (cf. Theorem
2.18 and Theorem 2.28):

(0.5) Mall ideals are sequentially Cohen-Macaulay.
(0.6) If ¢ C S is a Mall ideal, then Gingjex ¢ = inyjex C.

Therefore, on use of the facts (0.2), (0.3) and (0.4) it follows (cf. Proposition
3.4):

(0.7) The sets 1= and 12 are connected by Grébner deformations.

This finishes the proof of statement (0.1).

The calculations of the examples (cf. 2.4, 2.8, 2.29) have been performed with
CoCoA [4].

This paper is based on my Ph. D. thesis [7] to which I refer for technical details.

1. PRELIMINARIES

In this section we introduce the needed combinatorial and algebraic notions and
collect some results about initial and generic initial ideals. The latter ones play an
important role in the proof of connectedness of Hilbert schemes: A homogeneous
ideal a in a polynomial ring K[X1, ..., X,] over a field K and its generic initial ideal
Gin a have the same Hilbert function. Furthermore, by means of weight orders, they
are connected in the Hilbert scheme by a sequence of lines (cf. section 3).
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Generic initial ideals are Borel-fixed, which means that they are fixed under the
action of upper triangular matrices. If K has characteristic zero, they correspond to
Borel sets which have a combinatorial behavior which is rather easy to understand
(cf. section 1.2).

1.1. Notations and definitions.

Notation 1.1. Let N denote the set of nonnegative integers. Throughout this
paper n, d € N\ {0} are two positive integers.

Let K be a field with char K = 0.

We fix a polynomial ring S := K[Xi,...,X,]. (In the last section S will denote
the polynomial ring K[Xy,...,X,] in one variable more.) Any polynomial ring is
endowed with the standard Z-grading.

Let denote T the set of monomials of S. Define N} := {a € N" | a1+ - -+a,, = d}.
Then there is a bijection Ny — T NSy, a+— X := X" .- X% Via this bijection
we may identify the elements of N™ with the monomials in T.

Let denote >y, the homogeneous lexicographic order and >, the reverse lez-
icographic order of T. Both term orders are admissible, i.e. X7 > --- > X,, and
degu > degv = u > v for all u,v € T.

Definition 1.2. Let B C N};. A subset A C B is called a lezicographic segment of
B if for all a,b € B with a € A and b >, a we have b € A.

The subset B C N} is called lezicographic if B is a lexicographic segment of NJ;.
In this case, also the set XZ := {X® € T | b € B} is called lezicographic.

A monomial ideal a C S is called a lez ideal if a; T is lexicographic for all 7 € N.

Definition 1.3. Let R = @,y R; be a homogeneous Noetherian ring and M a
finitely generated graded R-module. Let R, := @D, 4 R; denote the irrelevant ideal
of R. For i € N let Hfh(M) denote the ith local cohomology module of M with
respect to R4, endowed with its natural grading (cf. [2, Chap. 12]).

Let denote by hps : Z — N, i +— dimg M; the Hilbert function of M.

A polynomial p € Q[t] is called an admissible Hilbert polynomial if there exists
a homogeneous ideal a C S with Hilbert polynomial p.

Remark 1.4. Let a C S be a homogeneous ideal. Then there exists a unique lex
ideal a!*™* C S with hq = hqex (cf. [19, 4]).

Let p € Q[t] be an admissible Hilbert polynomial. Then there exists a unique
saturated lex ideal [’ C S with Hilbert polynomial p (cf. [7, 1.11]).

Remark 1.5. Let a C S be a homogeneous ideal and let 7 be a term order of T.
Then hy = hin_q4 (cf. [6, 15.26]).

‘We introduce some more combinatorial notations:

Notation 1.6. For any set L and any integer m € N let L("™™) denote the set of
all n x m matrices [M;; |1 <i<mn, 1 <j <m] with entries M;; € L.

Set U(n) :={M € N | M;; =0 V1<j<i<n}.

Let g =]gs5 | 1 <i<n, 1<j<n]e K" bhe a matrix. Then we denote
by g : S — S the homomorphism of K-algebras defined by X; — > | g;;X; for
1<53<n.

For two functions f,g: Z — N we write f > g if f(k) > g(k) for all k € Z, and
we write f > g if f > g and if there exists k € Z such that f(k) > g(k).
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For 1 <i <n, let e; € N” denote the standard vector with (e;); =1if i = j and
(e;); = 0 otherwise.

For the following notations let a = (a1, ...,a,) € Z"™ and A C N™:
m(a) :=max ({1 <i<n|a; #0}U{l}),

A+a:={b+a|be A},

a* :=a—ane, = (a1,...,a,-1,0),

A= {b* | be A},

a® := (max {ay,0},...,max{a,,0}) € N,

a” := (—min{ay,0},...,—min{a,,0}) € N* so that a =a™ —a~.

1.2. Borel sets. Since the characteristic of K is zero, the Borel-fixed ideals a C
S are monomial ideals which are characterized by the following property: If a
monomial m € a is divisible by an indeterminate X, then i((; m € a for all i < j.
In each homogeneous component they correspond to so called Borel sets. Borel sets
are the Borel order analogue to lexicographic sets.

There are several equivalent ways to define the Borel order. The most plausible
is the following one: For all monomials m € T and for all 1 < k < n set X m >po;
X1 m and take the associative hull:

Definition 1.7. Define the Borel order >g,, of N as follows. Let a,b € NJ.
a>ge b & Jag,...,an_1 EN:ia—b= Z;:ll aj(ej —ejt1).
A set A C N} is called a Borel set if for all a,b € N} with a € A and b >p., a
we have b € A. In this case, also the set X4 C T is called a Borel set.

For technical reasons it will be more convenient to have a description of the Borel
order by upper triangular integer matrices (s. Lemma 1.12).

As a consequence of the fact that generic initial ideals are Borel-fixed inde-
pendently of the admissible term order (Proposition 1.14) we have the following
characterization of the Borel order:

Lemma 1.8 ([5,2.2]). Leta, b € N?. Then it holds a >g., b if and only if X* > X°
for all admissible term orders > of T.

Remark 1.9. Let a, b € Nj and p € Z" such that a+p, b+p € N}}. Then a >g,, b
if and only if a + p >gor b+ p-

Definition 1.10. A monomial ideal a C S is called a Borel ideal if a; N'T is a Borel
set for all ¢ € N.

Remark 1.11. If a C S is a Borel ideal, then a*** = (a : X2°) (cf. [6, 15.24]).
Hence, if B C N is a Borel set, then the set X7  is a Grobner basis of (X7)s2t
with respect to any term order of T.

Lemma 1.12. Let a,b € NJj. Then the following are equivalent:
(1) a zBor ba
(i) IMeUm): » My=b; V1<j<n, Y Mj=a V1<i<n
i=1 j=1

Proof. ()=-(ii): Let a >po, b. Choose ap € N for all 1 < k < n such that
a—b= Zz;ll ag(er — ext1). Set ag :=0 and m:=—> " min{0,b; — a;—1}. We
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will construct a sequence of matrices M(0), ..., M(m) € Z™™ such that for all
0 < k < m the following properties hold:

(1) M(k);j=0foralll<j<i<n,
(2) M(k);; >0forall 1 <i<j<n,

(3) ZM(k)’J =b; forall 1 <j<n,
i=1

(4) ZM(/{)” =q; forall 1 <i<n,
j=1

(5) Y _ min{0, M(k)i} =k —m.
i=1

Property (5) implies that M (m); > 0 for all 1 < ¢ < n, hence M(m) is the
requested matrix in U(n).

a;, ifi=5—-1;
Define M(0) € Z(™™ by M(0)i; == b — a1, ifi=j;
0, otherwise.

It is clear that M (0) has the properties (1), (2), (3) and (5). Setting oy, := 0, we
have forall1 <i<mn
n—1

Z M@); =b; — i1 +a; =b; + (Z ag(er — €k+1))i: a;,
j=1 k=1
whence M (0) has also property (4).
If m > 0, we construct M (1), ..., M(m) recursively. Let 0 < k < m and
assume that M(k) € Z("") with the required properties is constructed already.
Since k < m, by property (5) there exists

l:'=min{l <j<n|Mk); <0}

Properties (1), (3) and (4) imply that there exist p,g e Nwith 1 <p<l<g<mn
and M (k),, M (k)1 > 0. Now define M (k + 1) € Z(™™) by

M(k)i; + 1, it (i,5) € {1, 1), (p, D)}
M(k+1)ij = M(k)lj - 1a if (Zvj) € {(pal)a(17Q)};
M(k)ij, otherwise.

It is clear that M (k + 1) has the required properties.

(ii)=(i): For 1 < k < mn set ay, := Zle a; — b;. If there exists M € U(n) such
that > | M;; = bj for all 1 < j < n and Z?:l M;j = a; for all 1 < i < n, then
it follows that ap € N for all 1 < k < n. Furthermore, an easy computation gives
a—b=37"1 apler —exy1) (cf. [7, 1.26]). 0

1.3. Generic initial ideals and reverse lexicographic order. Generic initial
ideals have a lot of nice properties. We already mentioned that they are fixed under
the action of the Borel group. In this section we show that if S is endowed with the
reverse lexicographic order, then their formation commutes with saturation. (As
before, we assume that char K’ = 0).
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Definition 1.13. The unipotent subgroup U C Gl(n, K) is the group of all upper
triangular matrices with ones on the diagonal.

Proposition 1.14 ([6, Chap. 15.9]). Let a C S be a homogeneous ideal and T an
admissible term order of T.

a) There is a non-empty Zariski open set U C Gl(n,K) and a unique ideal
Gin, a C S such that Gin, a = in, g(a) for all g € U. Furthermore, the open set U
meets the unipotent group U.

The ideal Gin; a s called the generic initial ideal of a with respect to 7.

b) The generic initial ideal Gin, a is Borel-fixed, i.e. for all upper triangular
matrices g € Gl(n, K) it holds g(Gin, a) = Gin, a.

¢) An ideal b C S is Borel-fized if and only if it is a Borel ideal.

Corollary 1.15. If a homogeneous ideal of S remains fixed under the action of U,
then its generic initial ideal and its initial ideal with respect to any admissible term
order coincide.

Proposition 1.16. Let a C S be a homogeneous ideal. Then

sat) )sat_

Ginrlex(a = (Ginrlex a

Proof. Let P := UpeASS(S/a)\{S+} p be the set of all elements of S contained in
some relevant associated prime of S/a. We first show that (a : u®) = a®** for all
ue S\ P. Let ue Sy \ P. Let r € N be such that a®* = (a : S ). Since u” ¢ P,
it holds (0 :g/q u") = ng+ (0:5/q u") (cf. [2, 18.3.8 (iii)]). It follows (a: u") = a®.
We next prove that there exists a non-empty Zariski open set U C Gl(n, K) such
that g(a®®') = (g(a) : X°) for all g € U. Since #K = oo, the open subset S; \ P C
S is not empty, whence U := {g € Gl(n, K) | g71(X,,) ¢ P} is a dense open subset
of Gl(n, K). Let g € U. Then it holds g(a*) = g(a: g7 (X,,)>®) = (g9(a) : X°).
Choose g € U such that Ginyjex a@ = inyjex g(a) and Gingex (a%2) = ingjex g(a?t).
Since Gin,jex (a) is a Borel ideal, (Gingex @ : X3°) = (Gingjex )% (cf. Remark 1.11).
By [6, 15.12] we have inuex(g(a) : X3°) = (inpex g(a) : X2°). Altogether we
obtain Gingex(a®*") = inpex g(a¥) = inpex(g(a) : X°) = (inpex g(a) : X°) =
(Ginglex a1 X2°) = (Gingex a)%. O

2. MALL IDEALS

Fix a polynomial ¢ € Q[t] and a function f : Z — N. Define the sets
I_ :={a C S| ais a saturated homogeneous ideal with hq = f},

L — {a cs ‘ a is a saturated homogeneous ideal with Hilbert}
= polynomial g and with hy > f ’
D. Mall described an algorithm which yields the following proposition (cf. the pic-

ture below):

Proposition 2.1 ([15]). Assume that I— is not empty. Then there exists an ideal
Y € 1, (a so called growth-height-lexicographic ideal depending uniquely on f,
cf. [14]), such that for each a € 1= there exists a sequence of ideals ¢1, ..., ¢ in =
such that

° inrlex €1 = Ginrlex a,
® Ny ¢; = iNplex Ci—1 for alli € {2,...,1},
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[ inhlex Cr = [f.

Moreover, there exists a sequence of ideals 91, ..., 95 in I> such that

® inex 01 = [f7
L] inrlex 0; = (inh]ex Di,l)sat fOT all i € {2, ey 8},
L4 (inhlex as)sat = [q7
° h’inrlex 0 = hai < h(inhlox 0;)sat fOT all i S {1, ey S}.
I I
a c1 () Cr 01 02 0s
AN VRN S <N VRN S N
Ginylex a inplex €1 inplex ¢r= (inprex 01)%2* (inprex 05)52*
=iNylex €1 =inyiex €2 f=injex 01 =ingjex 02 =

Hence the two sets I— and I> are connected by Grobner deformations in the
following sense:

Definition 2.2. A set I of saturated homogeneous ideals of S is said to be connected
by Grobner deformations if for any two ideals a, b € T there exists a sequence
of ideals @ = ¢y, ..., ¢, = b in I such that for all ¢« € {1,...,r — 1} it holds
¢ = (iny ¢;41)%, ¢; = (Ginr ;1) ;o1 = (iny ¢;)% or ¢;11 = (Gin, ¢;)%*" with
respect to some term order 7 on S.

Definition 2.3. An ideal ¢ C S is called Mall ideal, if there exist f : Z — N,
qgeQ[t],acl_,r,seNandcy, ..., ¢, 0, ..., 05, computed by Mall’s algorithm
as in Proposition 2.1, such that ¢ € {c¢1,...,¢,01,...,04}.
Example 2.4. Let S := K|x,y, z,t] and ¢(t) := (thg) —(2t+3) = % +t2-L -2
Define f : Z — N by f(m) := 0 for m < 2 and f(m) := g(m) for m > 3. The
growth-height-lexicographic ideal with respect to f is ¥ = (22, zy, x2, 13, y?2) € I_.
The saturated lex ideal with Hilbert polynomial ¢ is [9 = (x, 3, y%2?%) € I.

There are just three saturated Borel ideals with Hilbert polynomial ¢, namely
£, 1% and b := (22, zy,y?, v2%) € I_.

There exists a Mall ideal ¢ = (y? —xz, 2%, vy, 22%) € I= such that in,jex ¢ = b and
inpjex ¢ = [/. Moreover, there exists a Mall ideal 0 = (y%2z — 2t?, 2%, 2y, v2,y3) € 1=
such that inyex 0 = I/ and (inpex 0)%* = [9. Hence, we get the following picture:

I_ I>

(v —zz,2% 2y,x2?) (v’ z—at® 2> xy,az,y°)

(2% 2y,y% w2”) (@? zy,22,9° 9%2) (z,y°,y%2%)

Mall ideals have a lot of nice properties. In particular, they are generated by
monomials and by binomials. The generating binomials are homogeneous with
respect to the standart Z-grading of S, and furthermore they are parallel. That
means that there exists p € Z™ such that they are homogeneous with respect to
the Z™/pZ-grading of S. Hence Mall ideals are edge ideals in the sense of [1]. In
section 2.2 we show that Mall ideals are sequentially Cohen-Macaulay. In section
2.3 we show that the initial ideal of a Mall ideal coincides with its generic initial
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ideal. For those two facts we need some combinatorial properties of Mall ideals
which are stated in section 2.1.

2.1. Binomial systems. D. Mall formulated his algorithm in a purely combina-
torial language. So, we want to go into the combinatorial details of [15]. We use
the notations of section 1.1.

Definition 2.5. A triple (A, C, p) consisting of two subsets A,C C N7} and of an
n-tuple p € Z" is called a binomial system (of degree d in n indeterminates) if the
following conditions hold:
(i) C+pC Ny,
(i) ANC=AN(C+p)=CN(C+p) =0,
(i) AUC and AU (C + p) are Borel sets.

Remark 2.6. If (4,C,p) is a binomial system, we always assume that it is of
degree d in n indeterminates unless otherwise stated.

If (A,C,p) is a binomial system with C' # (), then property (i) implies that
P4+ pn=0.

If (A,C, p) is a binomial system, then A is a Borel set.

If (A,C,p) is a binomial system, then for any term order of N" we have:
If ¢ < ¢+ p for some c € C, then c < c+p for all c € C.

If (A, C,p) is a binomial system, then (A,C + p, —p) is also a binomial system.
Hence if C' # 0, we always may assume that Pm(p) > 0.

Notation 2.7. If C' C N and p € Z™ are such that C' + p C N”, set
Bin(C, p) :={X° - X" €S |ceC}.
If (A,C,p) is a binomial system, define the ideal
F(A,C,p) := (X" UBIin(C, p)).
Example 2.8. Let n:=4, d:=3, A:={(3,0,0,0),(2,1,0,0),(2,0,1,0),(2,0,0,1),

(17 27 07 0)7 (17 ]‘) 17 0)7 (17 17 07 1)’ (1) 07 27 0)’ (07 37 07 0)7 (07 27 17 O)}’ C = {(07 27 07 1)}’
p:=(1,-2,1,0). Then (A, C,p) is a binomial system. The saturation of the ideal

F(A,C,p) = (23, 2%y, 22, 22t 29°, xyz, xyt, 222, y3, y22, 9%t — x2t) C Kz, y, 2, 1]
is the Mall ideal ¢ = (y? — 2z, 2%, 2y, v2?) of Example 2.4.

It is very easy to compute Grobner bases of ideals generated by binomial systems
and of their saturations:

Proposition 2.9. Let (A,C,p) be a binomial system.

a) XA UBIn(C, p) is a Grébner basis of F(A,C,p) with respect to the reverse
lexicographic order. Especially, if pm(,) > 0, then innex F(A,C, p) = (XAVCY,

b) F(A,C,p)*** = (F(A,C,p): X2).

) If pm(p) > 0, then XA UBIn(C*, p) is a Grobner basis of F(A,C, p)*** with
respect to the reverse lexicographic order.

Proof. The first two properties are shown in [15, 3.7(1)] and [15, 3.8]. Assertion
c) follows from a), b) and the characteristic property of the reverse lexicographic
order (cf. [21, 12.1]). O

The following definition is crucial for section 2.3.
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Definition 2.10. A binomial system (A, C, p) is good if b; = ¢; for all 1 < i < m(p)
and for all b,c € C.

Mall did not state the following fact explicitly. It is proved in detail in section
2.1 of [7].

Proposition 2.11. Let ¢ C S be a Mall ideal. Then there exists d € N and
a good binomial system (A, C,p) of degree d in n indeterminates such that ¢ =
F(A,C, p)*.

2.2. Sequentially Cohen-Macaulayness. In [13, 2.2] J. Herzog and E. Sbarra
showed that in characteristic zero the Borel ideals are sequentially Cohen-Macaulay.
Later J. Herzog, D. Popescu, and M. Vladoiu [12] generalized this result to mono-
mial ideals of Borel type in any characteristic of K. An ideal b C S is of Borel
type if (b : X3°) = (b s (X1,..., X)) for all 1 < j <n. It is well known that
Borel-fixed ideals are of Borel type ([6, 15.24]). Since an ideal F'(4,C,p) gener-
ated by a good binomial system is fixed under the action of the unipotent group
(cf. Proposition 2.26), it is not so surprising that F/(A, C, p) is sequentially Cohen-
Macaulay. Indeed F(A,C,p) is sequentially Cohen-Macaulay, even if (A,C,p) is
not good (cf. Proposition 2.17).

Definition 2.12. A homogeneous ideal a C S is sequentially Cohen-Macaulay if
there exists a finite filtration

a=aCmC - Ca, =5
by homogeneous ideals such that
(i) a;/a;—1 is Cohen-Macaulay for all 1 < i <7,
(ii) dim(a;/a;-1) < dim(a;41/a;) for all 1 <4 < r.
Given a binomial system (A, C, p), we construct a filtration
F(A,Cp)=Fy, CFACp™=FRC---CF,=8

of ideals such that the quotients F;11/F; are zero or Cohen-Macaulay of dimension
i for all 0 < 4 < n (Proposition 2.16). There is a natural way to define the this
filtration:

Notation 2.13. For i € N let S(;) denote the polynomial ring K[X7,..., X;] and
let T; be the set of monomials of S¢;). In particular, S,y = S and T,, = T. For
i < j one has a canonical inclusion Si;) C S(;). If i € Nand M C S, we write
(M)s,,, for the ideal in S(;) generated by M.

For ACN" and 1 <1i¢<n set

A;=A{(a1,...,a;) € N? | (a1,...,a4,0,...,0) € A}.
Let (A, C,p) be a binomial system. Set
Fy:=F(A,C,p).
For 1 <i<n—m(p)+1set
Fi = (F(A,C,p) N Spn_is1))™S.
For n —m(p) +2 <i < n set

sat

Fi = ((inrlex F’(AA7 C, p)) N S(n—i—i—l)) S.
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It is easy to see that Fop C -+ C Fy_pp41 and Fy_pyp)q2 C -+ C Fy
(cf. Lemma 2.15). The essential point is to show that F,_p,(p)+1 C Fuom(p)+2
and that Fy,_,(p)+2/Fn—m(p)+1 is Cohen-Macaulay.

The following Lemma is crucial, because it allows us to compute the generators
and the initial ideals of all ideals Fj.

Lemma 2.14. Let (A,C,p) be a binomial system with py,,) > 0, and let m(p) <
i1 <n. Then

X" UBin((C)*, (p1,- .-, pi))

is a Grobner basis of (F(A,C,p) N Sg))®" with respect to the reverse lexicographic
order of T;.

Proof. Since (A;, C;, (p1,--.,pi)) is a binomial system of degree d in ¢ indetermi-
nates, by Proposition 2.9 ¢) the set X(4)" U Bin((C;)*, (p1,...,pi)) is a Grébner
basis of F(A;, C;, (p1,- .., pi))%* with respect to the reverse lexicographic order of
T;. To complete the proof it is enough to show that

Since m(p) < 4, the inclusion “D” is obvious.
Let fe F(A,C,p)NSu) = (XA UBIn(C, p))s N S(i), and write

r s
f = ZUanj + Z’Uj(XCj — Xc_7+p)
j=1 i=j

with w1, ..., Up, V1, ..., s € Tand a1, ..., ar € A, 1, ..., cs € C. It follows from
m(p) < i, that X¢ € S(; if and only if X“*? € S, for all ¢ € C. Since f € S;),
we may assume that X%, X% — X% € S, for all j. This shows

f S <XA1 ) Bin(ci7 (pla cee 7Pi)>>S(i) = F(A'u Ci7 (Pl» DR p’L))a
and the proof is finished. O

Lemma 2.15. Let (A,C,p) be a binomial system with py,,) > 0, and put m :=
m(p). Then

a) F; = (F;N Si—i)S Vie{0,...,n}\ {n—m+1},

b) Fiy1 = (FsN S8 Vie{0,...,n—1}\{n—m+1},

C) (F(A7 C, p) N S(m))sat C ((inrlex F(Av Cv p)) n S(m—l))sats(m)’

d) F; C Fiyq forall 0 <i<n.

6) {le7 .. ,Xm,1} -

sat

\/((F(A, C,p)N 5(m>)5“5(1 )((inrlex F(A,C,p)) N Sin-1))
f) Let uw € Ty,. Then u ¢ ingiex(F (A, C, p) N Spy)™* implies
Xnu & inpiex (F (A, C, p) N Sy )™

S(m)> .

Proof. a) Let i € {0,...,n}\ {n —m+1}. If i > n —m + 1, then by Remark
1.11 the ideal F; = ((inrlch(A, C,p))N S(n_iﬂ))satS is generated in S(,_;) since
(inpiex F'(A, C,p)) N Sn—it1) C S(n—it1) is a Borel ideal by Proposition 2.9 a).
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If n—i+1 > m, then by Lemma 2.14 we have F; = (F(A,C, p)NS(,—i41))*S =
<X(An—i+1)* U Bin((Cp—it+1)*, (p1,- - 7Pn—i+1))>s
latter ideal is also generated in S, _;).

b) Let i € {0,...,n— 1} \ {n —m + 1}. Set

a.{F(A,C,pL ifi<n—m+1;
' inyex FI(A, C,p), otherwise.

S. Si i = 0, th
I ince pn—_it1 , the

Since i # n —m + 1 we have F; = (aN S,—;11))**'S and Fi11 = (a N S(;,—))*™S.
It follows that
Fi+1 = (a N S(n,i))sats = ((a n S(n,iJrl)) N S(n,i))sats
= ((CL n S(n,i+1))sat n S(n,i))sats = (Fl n S(n,i))sats.

¢) Set b := ((inrlex F(A,C,p)) N S(m,l))satS(m). We first prove the following
claim
XAm)" |y x(Cm)" ) X (Cm) +(p1sepm) —

Let b€ (An)* U(Cp)* U ((Ci)* + (p1,- -5 om))-

Case 1: b € (An)* U (Cp)*. Then there exists a € AU C such that b =
(aty.--,am—1,0) and m(a) < m. Let a’ := a+ ay(€m_1 — €m). Since AUC is a
Borel set, we have ' € AU C. Hence (a1,...,0m-2,0m-1+ amn) € (AU C)pm_1
and (a1,...,0m—2,0) € (AU C)pm_1)*. By Remark 1.11 and Proposition 2.9 a) it
follows that X (@1:-am-20) € (X AUOm-1ysat " ((ingiex F(A, C, p)) VS (m—1)) ™",
and therefore, X® = X7t X (@1:am-2,0.0) ¢ p,

Case 2: b € (Cp)* 4+ (p1,.-.,pm). Then there exists ¢ € C such that b =
(c1y-++y¢m-1,0) + (p1,..., pm). By similar arguments to those used in case 1 we
obtain a’ := c+p+(c+p)m(em—1—e€m) € AU(C+p). Now, m(a’) = m—1 implies
a’ € A, and therefore X (¢1:+¢m=2.0+(p1:-0m-2.0) € ((inyex F(A, C, p))ﬂS(m,l))sat.
It follows again that X = Xr(,fff)’”‘lXﬁ{"X(Cl"“’C’"*Z’O’O)*(f’l"“’pm*Q’O’O) € b, and
our claim is proved.

Now we get our statement by means of Lemma 2.14:

(F(A7 C, p) N S(m))Sabt = <X(Am)* U Bin((Cm)*v (p1, cee 7pm))>5(m)

C <X(Am)* U X(Cnl)* UX(Cm)*+(/)1a<~-7p7rl)> C b.

S(m)
d) This statement follows immediately from a), b), and ¢).
e) By Proposition 2.9 a) and Remark 1.11 it holds

((inrlex F(A, C, p)) N S(mfl))sat = (<XAUC>S N S(mfl))sat
<X((AUC)m_1)*>

- Sim-1)
Without loss of generality we may assume that A,,_1 # @ and set
r:=max{a,—1 €EN|a € (AUC)m_1}+ pm.
Let 1 <4 < m. It is enough to show that
X[<X((AUC)"“1)*>S(M,US(m) C (F(A,C,p)N S(m))sat'
Let a € (AUC),—1. Since (AU C),,—1 is a Borel set, we have
c:=am_16,+a" =a+an_1(e; —em-1) € (AUC)p_1.
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Case 1: ¢ € A,_1. Then
X;mlea* e F(A Cp)N S(m,l) C(F(A,Cp)N S(m))sat.

Case 2: ¢ € Cp—1. Then ¢ := (c¢1,...,¢m—-1,0,...,0) € C. Since (AU(C+p)) is
a Borel set, we have b := ¢/ +p+pm(e; —em) € AU(C+p). It is clear that m(b) < m,
whence b € A. Tt follows that X/ 1"/ Xe" = zPm (X< — X<+P) 4 XPmX© €
F(A,Cp)N S(m) C(F(A,C,p)N S(m))sat.

In both cases our claim follows.

f) From Lemma 2.14 it follows that
inrlex(F(A7 07 P) N 5(771))5at = <X(AmUCm)* >S(m,) .

Thus, if Xpu € inpex(F(A,C, p) N Smy)®™, there exists b € (A, U Cp)* such
that X divides X,,u. Since X? is not divisible by X,,, it has to divide u. Hence
u € il’lrlex(F(A, C,p)N S(m))sat. ([l

Proposition 2.16. Let (A,C,p) be a binomial system, and let 0 < i < n. Then
Fi11/F; is zero or Cohen-Macaulay of dimension i.

Proof. Let m := m(p). By Remark 2.6 we may assume that p,, > 0. Assume first
that i # n —m + 1. Set a := F; N S(,,_;. Then by Lemma 2.15 a) and b) we have
F;=aS and Fy; | = a*®S. Tt follows that

Fi—i—l/Fi = asatS/aS = (asat/a) ®S(n—i) S = H(l

Stn—i))+ (@) @5,y S

The (finitely generated) S(,_;-module H (1S< 7‘))+(a) is Artinian, therefore it is zero

or Cohen-Macaulay and zero-dimensional. Thus, the S-module F;;/F; is zero or
Cohen-Macaulay of dimension i (cf. [3, 2.1.9]).

We now prove our statement for ¢ =n —m + 1. Set
a:= ((inrlex F(Aa Ca p)) N S(m—l)
b:=(F(A,C,p)N S(m))sat.
By Lemma 2.15 c¢) it holds b C a. Since
. sat sa
Fn7m+2/Fn7m+1 = ((lelcx F(Aa C? P)) N S(m—l)) S/(F(A, Ca P) N S(m)) tS
= (Cl/b) ®S(m) S,
it is enough to show that the S(,,)-module a/b is zero or one-dimensional and
Cohen-Macaulay.
By Lemma 2.15 e) it holds
dima/b :dimS(m)/(b S: Cl) :dimS(m)/\/ (b Cl)
(m)

S(m)

)sat

Sm)>

SdlmS(m)/<X1,7Xm—1> =1

S(m)
Thus, it is enough to show that X, is a non-zerodivisor of a/b.

Lemma 2.15 f) states that X, is a non-zerodivisor of S(m)/ inex b. Since any
non-zerodivisor of S(,,)/ inyiex b is a non-zerodivisor of S(,,)/b and hence of a/b,
our proof is finished. (Il

Cancelling the redundant ideals in the filtration Fy C Fy C --- C F,, = S we get
the following statement:
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Proposition 2.17. Let (A, C, p) be a binomial system. Then the ideals F(A,C, p)
and F(A,C,p)* are sequentially Cohen-Macaulay.

Together with Proposition 2.11 we have proved:
Theorem 2.18. Mall ideals are sequentially Cohen-Macaulay.

2.3. The generic initial ideal of a binomial ideal. Let (A, C,p) be a good
binomial system. Then the generic initial ideal of F'(A4, C, p) and the initial ideal of
F(A,C,p) with respect to any admissible term order coincide (Proposition 2.27).
This conclusion is not at all trivial: It does not hold if (4, C, p) is not good (s. Ex-
ample 2.29). The crucial point is that F(A,C,p) is fixed under the action of the
unipotent group, if (A, C,p) is good (Proposition 2.26). In the following we will
prove this statement.

In case the binomial system (A, C, p) is good, we want to compute g(f) if f is a
generator of the ideal F(A,C,p) and g € U is unipotent. To do this, we introduce
generic coordinates for g:

Notation 2.19. Set T':= K[Y;; | 1 <i < j <n].
Define the automorphism of T-algebras

¢:T[X1,..., X, = T[X1,..., X,

by gf)(Xj) = 5:1 Yth

Let g=1[g;; | 1 <i<m, 1<j<n]e K™ beamatrix. Then we denote by
g:T[Xy,...,X,] — S the homomorphism of S-algebras defined by §(Yi;) := ¢i;
for1 <i<j<n.

For a € N" set g% := [[\_, g5 and Y := [\, V.

For M € N get YM .= [licicj<n Yéw”

For p € Z™ and M € Z(™™ let M +p € Z(™™ denote the matrix which is defined
by
Mij, if i # j;
M;; + p;, otherwise.

(M +p)ij = {

For a,b € N set

Ula,b):={M €U(n) | Y Mj; =a;,» M;=0b;¥1<j<n},
i=1 i=1
where U(n) is defined as in 1.6.

Remark 2.20. Let a,b € N*. Then by Lemma 1.12: a >g,, b <= U(a,b) # 0.

Lemma 2.21. Let b,c € NJj and p € Z" be such that b+ p, ¢ + p € N} and such
that b; = ¢; for all 1 <i < m(p).

a) Let b >po, ¢ and M € U(b,c). Then Mj; =c; for 1 <j <m(p).

b) Let b >po, ¢ and M € U(b,c). Then Mj; +p; >0 for 1 < j <n.

¢) Let M € Z™™) . Then M € U(b,c) <= M+pecU(b+p,c+p).

Proof. a) We use an inductive argument. It is clear that My, = ZZL:I My = ¢
Let 1 < j < m(p) and assume that ¢, = My for all 1 < k < j. We have
My, = ¢, = by, = Z?:l My; for 1 < k < j and therefore Mj; = 0 for 1 < k < j.
Since M;; = 0 for all ¢ > j, it holds ¢; = D1 | M;; = Mj;.
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b) This statement follows from statement a) and from the condition ¢; + p; > 0
for1 <j<n.

c) Let M € U(b,c). Then part b) states that M + p € U(n). Since

(b+p)j=bj+p;= ZM]1+p] —Z(M+p)ji
i=1

and
(c+p)j=cj+p;= ZM” o= S+ )y
=1
forall 1 <j <m,it holds M +p € U(b+p,c+p).
In order to prove the converse implication, one just has to replace b, ¢, p with

b+ p, c+ p, —p respectively. (]
Notation 2.22. For m and mq,...,m, € N with m = Z 1 m; set
m o m!
mi,...,mn)  mil---myl’

For M € N(mn) get .
~1I ( >t Mij >
L0\ My, My
For a,b € N}} let a € T be the coefficient of X% in the polynomial (;S(Xb), o)

that ¢(X?) = ZaeNg abX“
For b,c € N} and p € Z" such that b+ p, ¢+ p € Nj and such b; = ¢; for all

1 <i<m(p) set
p;)),c = Z :U’]\/IYM_p y
MEU (b,e)
where p~ is defined according to 1.6.
Remark 2.23. Let b,c € N} and p € Z" be such that b+ p, ¢+ p € N} and such
b = ¢; for all 1 < ¢ < m(p). Then for all M € U(b,c) we have by Lemma 2.21 b)
that M;; + p; > 0 for 1 < j < n, whence YM=r" € T[Xy,...,X,]. Therefore, pg,c
is a polynomial in T[X7,..., X,].
If b 2por ¢, then pg’c = 0 by Remark 2.20.
Lemma 2.24. Leta,b € Nj;. Then a ZMGU (a,) 1 MYM, In particular a >go, b
if and only if a2 # 0.

Proof. From the multinomial formula it follows

Y abxe=¢(x") =] EJ:Y;in)b

aeN? j=1 i=1

ki1, k12, k22, .. kin, oo knn €N j=1
o1 kig=b; ¥ 1<j<n
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n b 7
= Z H <M1j J M, j> H(Yini)M”
e . M,

MeU(n) =1
ey Mij=b; ¥V 1<j<n

Mi; < Mi;
= > wr [T v
MeU(n) 1<i<j<n

z?:l Mi,j:bj V 1§]§n

- Y e

MeU(n) =1
oioy Mij=b; V 1<j<n
— § MMYMX(ZyzlMlj"'”Z;:lM”j).
MeU(n)

z?:l Mi,j:bj V 1§]§n

Hence we get

af;: Z parYM = Z Y M.

MeU(n) MeU(a,b)
2?21 Mij:bj v 1§]Sn
n

j=1 Mij:ai v IS’LSTL

In particular, @ >, b <= U(a,b) # 0 <= ab # 0, by Remark 2.20. O

Lemma 2.25. Let b,c € Nj and p € Z™ be such that b+ p, c+p € N} and b; = ¢;

for all 1 < i <m(p). Then af =pj . Y* and a;‘iZ =Dhe ye'.

Proof. If b #gor ¢, then of = agiﬁ = 0 by Lemma 2.24 and pj , = 0 by Remark
2.23. Hence, we can assume that b >p,, ¢. The first equation follows immediately
from Lemma 2.24. To prove the second one, we first claim that pys = ppr4, for all
M e U(b,c). Let M € U(b,c). Let 1 < j <n. If j < m(p) we have by part a) of
Lemma 2.21 that

( ¢ ): G o (et ) :( ¢+ pj )
Mlj,...,Mnj ij! (ij +pj)! (M+p)1j,...,(M+P)nj

If j > m(p) we have (Mlj,_c_’: Mnj) = ((M+p)1jf.—.~_.f)(JM+p)n,j)' Our claim now follows
from the definition of ppr and pps4p-

By Lemma 2.24 and 2.21 ¢) we get
P +
apih = Z Y M = Z Y0 SRS N
MeU (b+p,c+p) MeU(b,c)
[

Proposition 2.26. Let (A4, C,p) be a good binomial system and g € U an unipotent
matriz. Then g(F(A,C,p)) = F(A,C,p).

Proof. If C' = (), the statement follows from the fact that the ideal (X“) is Borel-
fixed (s. Proposition 1.14).

Now let C' # @) and ¢ := minyex C. Then (A, C\ {c}, p) is again a good binomial
system (cf. Lemma 1.8). Since g(F (A, C,p)) = (g(X“ UBin(C, p)), it is enough to
show the following equality of K-vectorspaces:

(g(XA UBIn(C,p)))k = (XA UBIn(C, p)) k-
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Hence it is enough to show that
g( XA UBIn(C, p)) C (X UBIn(C, p)) k.

By induction on #C we may assume that g(F(A,C \ {c},p)) = F(A,C\ {c}, p),
whence

g(X* UBIn(C'\ {c},p)) C (X! UBIn(C, p)) k-
Therefore, it is enough to show that
g(X¢ — X)) € (XA UBIn(C, p)) k-

In the following we make use of the Notations 2.19 and 2.22. Observe that
GY? )=g° =1land g(Y? ) =g’ =1 as g is unipotent. Since (A,C,p) is good,
we may apply Lemma 2.25 to compute

gX = XOH) = g(p(X° — X°*7))

= 3(2 alX" = ) agtrx")

a€N} a€Ny
= 3( D aX"— ) gt
aZBorC aZBorctp
oS ekt Y asrxe) (Y aixe o Y arrexe)
acA a€A aceC acC+p
a>BorC a>BorC+p aZ>BorC aZBorctp
1.9
(L9) g(z alX — Z a(c;ran) +§(Z(agXb _ O‘EIZXHP))
a€A a€cA beC
(2.25) _ B _ N
=790 (et —as™)X) + (Y (0f Y X0 —pf Y X))
acA beC
_ _ _ - _ +
= > glag —ag™)X + Y g ) (g(Y" )X —g(Y* )X )
a€A beC
= > glag —ag™) X+ g(ph )X — X"7).
acA beC
Hence our Proposition is proved. (Il

Now, it follows immediately from Corollary 1.15:

Proposition 2.27. Let (A,C,p) be a good binomial system and T an admissible
term order. Then Gin, F(A,C,p) =in, F(A,C,p). O

As a further consequence we have by Proposition 2.11 and Proposition 1.16:
Theorem 2.28. If ¢ C S is a Mall ideal, then Gingjex ¢ = inyex C.

We conclude this section with a example which shows that Proposition 2.27 fails
if the binomial system (A, C, p) is not good:

Example 2.29. Consider the ring R := K[Xy,...,X5] = K[z,y, 2, t,u]. Let p :=
(1,-2,2,-2,1), b := (0,2,0,3,0), ¢ := (0,2,0,2,1) and C := {b,c}. Let B C N?
be the smallest Borel set containing D := C' U (C + p) and set A := B\ D. Then
(A,C, p) is a binomial system. Let a := F(A, C, p). We then compute:
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Ginyjex 0 = (xs, x4y, x3y2, x2y3, xy4, y57 x4z, xgyz, a:2y2z, asy3z, y4z, x3z2,
xzyz2, acy222, y3z2, x223, xyz3, y2z3, xz4, x4t, xsyt, x2y2t,
xy?’t7 y4t7 1‘32’t, xzyzt, zy2zt, ygzt, x2z2t, 3:yz2t, y2z2t, x23t
2342 x2yt2 xy2t2,y3t2 2212 xyzt2 y22t2 x22t2 243 xytS y2t3,
x4u:cyuxyuxyuyu;v?’zu:cyzuazyzuyzuxZZQu

acyz u7y 2 u,x23u7m3tu T ytu Ty 2tu Y tu 2 ztu , xyztu,

yQZtu,xzztu,xthU,xytzu z3u2 z? yu zy2u2 z? zu? xyzuz)

inex 0 = (2°, 2y, 239?223, oy P, a2, aByz, 2%y 2, wyB 2, yt e, 2322,

xyz a:yz,yz IZstyz,yz xzt xtzyt:cy
xy3t,y4t7x zt,az yzt,my zt,y zt,sc Z tmcyz t,y th,xz t

232 :172yt2 xy2t2 y3t2 2 zt? xyzt2 y22t2 a:22t2 223 J:yt3,y2t3,
xtu, 23y, 2297, xyPu, ytu, 2 2u, 22y zu, oy 2u, B 2w, 22 2%,

xyz u, Y 22u xzsu T tu T ytu xthu y‘gtu z2ztu , xyztu,

Y ztu =2t :cyt2u yttu t2u x3u2 z? yu xy u? 9522u2 a:yqu)

These ideals are not equal, as is indicated by the underlined generators. The
reason is the following: Let M € N(%) be the unique element of U(b,c). Then
Mss = 0 # ¢5, but m(p) = 5 (counterexample to part (a) of Lemma 2.21). We
cannot conclude that pps equals piar,; indeed ppr = 1 and par4, = 2. It follows
that aj i’ = 2}95761/”+ (counterexample to Lemma 2.25). Let g € GI(5,K) be

b+p
unipotent. We then compute

g(X° = Xty = X — X 4 g(pp (X" —2X"TP) + ) " glaf — agt) X
acA
¢ (X4 UBIn(C, p))x
(counterexample to Proposition 2.26). A further computation yields
g(Xb _ Xb+p) Xb Xb-‘rp + Z _ ab"rp)Xa
acA

Since A is a Borel set, it is clear that X4 C g(F(A,C,p)), whence X — Xt+r,
XP—2XP 4 g(py ) THX = XP) € g(F(A, C, p)). Since b >pex ¢ we get X0 €
Gingex F(A, C, p) \ ingex FI(A, C, p) and X¢ € inyex F(A, C, p) \ Gingex F(A,C, p).

3. APPLICATION TO HILBERT FUNCTION STRATA

Let p € Q[t] be a polynomial. The Hilbert scheme Hilb” = Hilbﬁ? is defined
to be the representing scheme of the Hilbert functor Hllb]}m Schx — Set which
assigns to each locally Noetherian scheme T over K the set of all closed subschemes
W C B¢ x T, flat over T such that for every point € T" the fibre W, of W over x
has Hilbert polynomial p (cf. [9], [20]). The Hilbert scheme is characterized by the
following

Universal Property 3.1. There exists a universal closed subscheme Wy, C
P2 x Hilb?, flat over Hilb? with Hilbert polynomial p in all fibres such that for every
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locally Notherian K-scheme T' and for every closed subschemes W C B¢ x T', flat
over T with Hilbert polynomial p in all fibres there exists a unique morphism of
K-schemes g : T — Hilb? such that W = Wy, Xuiwe 1 18 the pullback of the
universal subscheme by g.

For each point z € Hilb%, let x(z) denote the residue field of z on Hilb” and
set W, := Wi, Xmie Spec(k(x)) € Hilb% (Spec(k(x))). Furthermore let Z(*) C
Oﬂi?m) denote the associated coherent ideal sheaf. It has Hilbert polynomial g(t) :=
(") = (),

Definition 3.2. For i € N and x € Hilb? define the ith cohomological Hilbert
function

hi i Z— N, m— dimq) H (B, I (m)).
Fix a sequence (f;)ien of numerical functions f; : Z — N. Then by the Semicon-
tinuity Theorem
HZ = Hﬂ,}{ = {z € Hilb? | L. > f; Vi e N}
is a closed subspace of Hilb? and
H™ := Hygy := {x € HIb” | hg = fo, hi > f; Vi > 1}
is a locally closed subspace of Hilb”.
In the rest of this section we prove that H= and H= are connected. Therefore,

we redefine the polynomial ring S by S := K[Xj,...,X,], where K is a field of
characteristic zero as before.

Notation 3.3. Define

_ a is a saturated homogeneous ideal with
I~ .= {Cl C S‘ }7

he = fo and hY > fi_ for all i > 2
2= {a c ’ a is a saturated homogeneous ideal with Hilbert poly—}
’ nomial ¢ such that hq > fo and A}, > f;_; forall ¢ > 2/’
where h! : Z — N, m — dimg H§+ (a);, denotes the i-th locally cohomological
Hilbert function of a.

Proposition 3.4. The sets 1= and 12 are connected by Grébner deformations.

Proof. Let a € I= and apply Proposition 2.1 to find two sequences of Mall ideals

¢, ..., ¢ and 0y, ..., 05 with the appropriate properties.
By [18] we know that hﬁ < hfinhlex o)sat for all 4 > 2 and all homogeneous ideals

¢ C S. Since Mall ideals are sequentially Cohen-Macaulay (Theorem 2.18), we know
by [13] and (Theorem 2.28) that h{ = h{;, ... for all i > 2 and all Mall ideals
¢ C S. Hence we get the situation

inyle

I= 1=
a c1 c2 Cr [ 02 [US
\< :/ \< :/ \< :/ AN / SN
N/ N/ 0 N/ N /7 0N
Ginglex a inplex €1 inplex ¢r= (inprex 01)%2* (inprex 05)52*
=inyjex €1 =injex c2 0 =in,iex 91 =inpiex 02 =4
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where the signs indicate the following:

=”: The Hilbert function and the locally cohomological Hilbert functions remain
constant.
“<”: The Hilbert function remains constant and the locally cohomological Hilbert
functions do not decrease.
“<”: The Hilbert function increases and the locally cohomological Hilbert func-

tions do not decrease.
O

Theorem 3.5. The sets HZ and H= are connected by lines.

Proof. Assume at first that the field K is algebraically closed. Then the closed
points of Hilb? are precisely the saturated homogeneous ideals of S with Hilbert
polynomial q. By the Serre-Grothendieck Correspondence the set of closed points
of H= equals 1= and the set of closed points of HZ equals IZ. By the previous
Proposition, the only fact to prove is the following:

Claim: Let a C S be a homogeneous ideal and T a term order of S such that a,
in;a € I= or such that a, in,a € I>. Then a and in, a are connected by a line
which lies entirely in I—, I> respectively.

In fact, by means of weight orders, described for example in Chapter 15.8 of [6],
one constructs an ideal 5*(a) C S[z] and a flat family S[z]/3%(a) over K[z] whose
fibre over 0 is S/in, a, and whose fibre over (z — u) for v € K \ {0} is isomorphic
to S/a. A detailed scheme theoretic proof of the Claim may be found in section 3.3
of [7].

Now, assume that K is an arbitrary field of characterisic zero. Endow the locally
closed subspaces HBE?, H]PEL C Hilbﬁ? with the induced reduced scheme structure.
Let k be the algebraic closure of K. The proof is finished if we show:

Claim: Hﬂf = (ng Xspec() SPeC(k))rea and Hg, = (Hz, Xspee(x) Spec(k))red-
A detailed proof of this fact may be found in section 3.4 of [7]. Its idea is the
following: Define functors
Q]P:}? :Sch’}?d — Set, E]PE}? :Sch’}?d — Set
by assigning to each reduced K-scheme T the sets

If g : T — Hilb® is a morphism such that W is the
pull back of the univ_ersal subscheme Hmi, by g, ,
then hg(m) = fo and hfq(x) >fiVi>1VeeT.

If g : T — Hilb? is a morphism such that W is the}

Hp(T) = {W € Hilb?, (T)

=

pull back of the universal subscheme Hpi, by g,

75}? (T) := ¢ W € Hilbj, (T) _
then h;<z> > fivVieNVexeT.

respectively. The functors H, ﬂf}?, H %{n are subfunctors of the Hilbert functor. It is

easily shown that H; ]P:}(n, H %}? are represented by the schemes Hgg, HH;?(", respectively.

Now, the claim follows from general nonsense (cf. [10, 0.1.3.10]). g
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