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Abstract

We generalize Gaeta’s Theorem to the family of determinantal schemes. In other words,
we show that the schemes defined by minors of a fixed size of a matrix with polynomial
entries belong to the same G-biliaison class of a complete intersection whenever they have
maximal possible codimension, given the size of the matrix and of the minors that define
them.

Introduction

In this paper we study the G-biliaison class of a family of schemes, whose saturated ideals are gen-
erated by minors of matrices with polynomial entries. A classical theorem of Gaeta ([9]) states that
every codimension 2 scheme defined by the maximal minors of a t× (t+ 1) matrix with polynomial
entries can be CI-linked in a finite number of steps to a complete intersection. Recently, other fam-
ilies of schemes defined by minors have been studied in the context of liaison theory. The results
obtained in this paper are a natural extension of some of the results proven in [20], [14], [10], and
[11]. In [20] Kleppe, Migliore, Miró-Roig, Nagel, and Peterson proved that standard determinantal
schemes are glicci, i.e. that they belong to the G-liaison class of a complete intersection. We refer to
[22] for the definition of standard and good determinantal schemes. Hartshorne pointed out in [14]
that the double G-links produced in [20] can indeed be regarded as G-biliaisons. Hence, standard
determinantal schemes belong to the G-biliaison class of a complete intersection. In [11] we defined
symmetric determinantal schemes as schemes whose saturated ideal is generated by the minors of
size t×t of an m×m symmetric matrix with polynomial entries, and whose codimension is maximal
for the given t and m. In the same paper we proved that these schemes belong to the G-biliaison
class of a complete intersection. We recently proved in [10] that mixed ladder determinantal varieties
belong to the G-biliaison class of a linear variety, therefore they are glicci. Ladder determinantal
varieties are defined by the ideal of t× t minors of a ladder of indeterminates. We call them mixed
ladder determinantal varieties, since we allow minors of different sizes in different regions of the lad-
der. The results in this paper provide us with yet another family of arithmetically Cohen-Macaulay
schemes, for which we can produce explicit G-biliaisons that terminate with a complete intersec-
tion. The question that one would hope to answer is whether every arithmetically Cohen-Macaulay

scheme is glicci. Considerable progress has been made by several authors in showing that special
families of schemes are glicci (see e.g. [3], [4], [20], [24], [13], [5], [6], and [19]). On the other side,
some results show that the theory will not extend in a straightforward fashion from codimension 2
to higher codimension (see e.g. [13], [23], and [15]).

In this paper, we study a family of schemes that correspond to ideals of minors of fixed size
of some matrix with polynomial entries. We call them determinantal schemes (see Definition 1.3).
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In Section 1 we establish the setup, and some preliminary results about determinantal schemes.
In Remarks 1.6 and Lemma 1.12, we characterize the determinantal schemes that are complete
intersections or arithmetically Gorenstein schemes. In Theorem 1.15 and Proposition 1.18 we relate
the property of being locally complete intersection outside a subscheme to the height of the ideal
of minors of size one less. Section 2 contains results about heights of ideals of minors. It contains
material that will be used to obtain the linkage results, but it can be read independently from the rest
of the article. In this section we consider an m×n matrix M , such that the ideal It(M) has maximal
height (m− t+ 1)(n− t+ 1). In Proposition 2.2 we show that deleting a column of M we obtain a
matrix O whose ideal of t× t minors It(O) has maximal height (m− t+ 1)(n− t). In Theorem 2.4,
we show that if we apply generic invertible row operations to O and then delete a row, we obtain
a matrix N whose ideal of (t − 1) × (t − 1) minors has maximal height (m − t + 1)(n − t + 1).
Under the same assumptions, we show that if we apply generic invertible row operations to M
and then delete one entry, we obtain a region L whose ideal of t × t minors has maximal height
(m − t + 1)(n − t + 1) − 1 (see Corollary 2.9). The consequence which is relevant in terms of the
liaison result is that starting from a determinantal scheme X we can produce schemes X ′ and Y
such that X ′ is determinantal and both X and X ′ are generalized divisors on Y (see Theorem 2.11).
Section 3 contains the G-biliaison results. The main result of the paper is Theorem 3.1, where we
show that any determinantal scheme can be obtained from a linear variety by a finite sequence of
ascending elementary G-biliaisons. In particular, determinantal schemes are glicci (Corollary 3.2),
although they are not always licci.

1. Determinantal schemes

Let X be a scheme in P
r = P

r
K , where K is an algebraically closed field. Let IX be the saturated

homogeneous ideal associated to X in the polynomial ring R = K[x0, x1, . . . , xr]. For an ideal I ⊂ R,
we denote by H0

∗ (I) the saturation of I with respect to the maximal ideal m = (x0, x1, . . . , xr) ⊂ R.

Let IX ⊂ OPr be the ideal sheaf of X. Let Y be a scheme that contains X. We denote by IX|Y

the ideal sheaf of X restricted to Y , i.e. the quotient sheaf IX/IY . For i > 0, we let H i
∗(P

r,I) =
⊕t∈ZH

i(Pr,I(t)) denote the i-th cohomology module of the sheaf I on P
r. We simply write H i

∗(I)
when there is no ambiguity on the ambient space P

r.

Notation 1.1. Let I ⊂ R be a homogeneous ideal. We let µ(I) denote the cardinality of a set of
minimal generators of I.

In this paper we deal with homogeneous ideals in the polynomial ring R.

Definition 1.2. Let M be a matrix with entries in R of size m×n, where m 6 n. We say that M is
homogeneous if its minors of any size are homogeneous polynomials. Notice that M is homogeneous
if and only if both its entries and its 2 × 2 minors are homogeneous.

We always consider homogeneous matrices. We study a family of schemes whose homogeneous
saturated ideal I is generated by the t×t minors of a homogeneous matrix M . In this case we denote
I by It(M). Notice that for a 1-generic matrix of linear forms, the ideal It(M) has ht It(M) >

m+ n− 1− 2(t− 1) > 1, hence it is always saturated (see [7] for the definition of 1-generic and the
proof of the lower bound on the height).

We regard matrices up to invertible transformations, since they do not change the ideal It(M).
We always assume that the transformations that we consider preserve the homogeneity of the matrix.
In the special case t = 1 it suffices to assume that the entries of the matrix are homogeneous
polynomials.

Definition 1.3. Let X ⊂ P
r be a scheme. We say that X is determinantal if:
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i) there exists a homogeneous matrix M of size m× n with entries in R, such that the saturated
ideal of X is generated by the minors of size t× t of M , IX = It(M), and

ii) X has codimension (m− t+ 1)(n − t+ 1).

We refer to [22] for the definition of standard and good determinantal schemes.

Remark 1.4. The ideal It(M) generated by the minors of size t× t of an m× n matrix M has

ht It(M) 6 (m− t+ 1)(n − t+ 1).

This is a classical result of Eagon and Northcott. For a proof see Theorem 2.1 in [2]. Therefore the
schemes of Definition 1.3 have maximal codimension for fixed m,n, t.

The matrix M defines a morphism of free R-modules

ϕ : Rn −→ Rm.

Invertible row and column operations on M correspond to changes of basis in the domain and
codomain of ϕ. The scheme X is the locus where rk ϕ 6 t − 1. So it only depends on the map ϕ
and not on the matrix M chosen to represent it.

Examples 1.5. Many varieties which are classically studied in algebraic geometry are determinan-
tal. The following and more examples are discussed in Chapter 9 of [12].

i) The Segre variety is an example of determinantal variety. It is the image of the Segre map

σ : P
m−1 × P

n−1 −→ P
mn−1

hence its saturated ideal is generated by the 2 × 2 minors of the generic matrix

M =











x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

...
xm,1 xm,2 · · · xm,n











.

ii) Let M = [xi,j]16i6m, 16j6n, and let S ⊂ P
mn−1 be the Segre variety with IS = I2(M) as

in the previous example. The variety V of secant (t − 2)-planes to S is the determinantal
variety corresponding to the ideal It(M). V is arithmetically Cohen-Macaulay of codimension
(m− t+ 1)(n− t+ 1). In [10] we proved that both S and V belong to the G-biliaison class of
a complete intersection.

iii) Let 1 6 m < n, t > 2, and let

M =











x0 x1 x2 . . . xn−m
x1 x2 x3 . . . xn−m+1

...
...

...
...

xm xm+1 xm+2 . . . xn











be a Hankel matrix of size (m+ 1)× (n−m+ 1). The ideal It(M) defines the variety of secant
(t− 2)-planes to the rational normal curve C ⊂ P

n defined by IC = I2(M). Observe that both
C and its (t−2)-secant variety are determinantal. In fact they are good determinantal, defined
by the maximal minors of

[

x0 x1 x2 . . . xn−1

x1 x2 . . . xn

]

and











x0 x1 x2 . . . xn−t+1

x1 x2 x3 . . . xn−t+2

...
...

...
...

xt−1 xt xt+1 . . . xn
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respectively. The fact that good determinantal schemes are glicci is shown in [20], while the
fact that they belong to the G-biliaison class of a complete intersection can be found in [14].

The family of determinantal schemes contains well-studied families of schemes, such as complete
intersections and standard determinantal schemes.

Remarks 1.6. (i) Complete intersections are a subfamily of determinantal schemes. More precisely,
they coincide with the determinantal schemes that have t = 1 or t = m = n (see also Lemma 1.12).

(ii) Standard determinantal schemes are a subfamily of determinantal schemes. In fact, a deter-
minantal scheme is standard determinantal whenever t = m 6 n, that is whenever its saturated
ideal is generated by the maximal minors of M .

(iii) Notice that the family of determinantal schemes strictly contains the family of standard
determinantal schemes. For example, the schemes of Example 1.5 (ii) are determinantal, but not
standard determinantal for 2 6 t 6 m − 1. This can be checked e.g. by comparing the number of
minimal generators for the saturated ideals of determinantal and standard determinantal schemes.

(iv) The Cohen-Macaulay type of a determinantal scheme as of Definition 1.3 is

t−1
∏

i=1

(

n−i
t−1

)

(

m−i
t−1

)

(see [2]). In particular, a determinantal scheme is arithmetically Gorenstein if and only if m = n.
Glicciness of arithmetically Gorenstein schemes is established in [6]. In [21] it is shown that the
determinantal arithmetically Gorenstein schemes with t + 1 = m = n are glicci. Theorem 3.1 will
imply that an arithmetically Gorenstein determinantal scheme belongs to the G-biliaison class of a
complete intersection.

In some cases, we will be interested in ideals that are generated by a subset of the minors of M .

Notation 1.7. Let M = [Fij ]16i6m, 16j6n be an m× n matrix with entries in the polynomial ring
R. Fix a choice of row indexes 1 6 i1 6 i2 6 . . . 6 it 6 m and of column indexes 1 6 j1 6 j2 6

. . . 6 jt 6 n. We denote by Mi1,...,it;j1,...,jt the determinant of the submatrix of M consisting of the
rows i1, . . . , it and of the columns j1, . . . , jt.

Let L be the subset of M consisting of all the entries except for Fmn. We denote by It(L) the
ideal generated by the minors that involve only entries of L:

It(L) = (Mi1,...,it;j1,...,jt | it 6= m or jt 6= n) ⊂ It(M)

Remark 1.8. Let L be the subset of M consisting of all the entries except for Fmn. The ideal It(L)
has height

ht It(L) 6 (m− t+ 1)(n − t+ 1) − 1.

This is a special case of Corollary 4.7 of [16].

We now establish some properties of determinantal schemes that will be needed in the sequel.
We use the notation of Definition 1.3. We start with a result due to Hochster and Eagon (see [17]).
We state only a special case of their theorem that is sufficient for our purposes.

Theorem 1.9. (Hochster, Eagon) Determinantal schemes are arithmetically Cohen-Macaulay.

In the sequel, we will also need the following theorem proven by Herzog and Trung. In Corollary
4.10 of [16] they establish Cohen-Macaulayness of a larger family of ideals of minors, but we state
their result only for the family of ideals that we are interested in.
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Theorem 1.10. (Herzog, Trung) Let U = (xij) be a matrix of indeterminates of size m × n, and
let V be the subset consisting of the all entries of U except for xmn. Then

It(V ) := (Ui1,...,it;j1,...,jt | it 6= m or jt 6= n)

is a Cohen-Macaulay ideal of height

ht It(V ) = (m− t+ 1)(n − t+ 1) − 1.

We recall that if a scheme defined by the t× t minors of a matrix of indeterminates is a complete
intersection, then it is generated by the entries of the matrix or by its determinant (in the case of a
square matrix). In fact, the t× t minors of U = [xij ] are a minimal system of generators of It(U) of
cardinality

(

m
t

)(

n
t

)

(as they have the same degree and are linearly independent over K). The height
of the ideal is (m− t+ 1)(n− t+ 1), and the two quantities agree exactly when t = 1 or t = m = n.
We are now going to prove the analogous result for a homogeneous matrix M whose entries are
arbitrary polynomials. We also prove a similar result for a subset of the t× t minors of M . We start
by proving an easy numerical lemma.

Lemma 1.11. Let m,n, t be positive integers satisfying 2 6 t 6 m − 1, m 6 n. The following
inequality holds:

(mn− t2)(m− 1) · . . . · (m− t+ 2)(n − 1) · . . . · (n− t+ 2) > (t!)2.

Proof. Since t 6 m− 1 6 n− 1,

(m− 1) · . . . · (m− t+ 2)(n − 1) · . . . · (n − t+ 2) > [(t!)/2]2.

Therefore it suffices to show that

mn− t2 > 4.

But

mn− t2 > m2 − (m− 1)2 = 2m− 1 > 4

since m > t+ 1 > 3.

The following lemma is analogous to Lemma 1.16 of [11].

Lemma 1.12. Let M = [Fij ] be a homogeneous matrix of size m× n with entries in R or in RP for
some prime P . Let L be the subset consisting of the all entries of M except for Fmn.

(i) If M has no invertible entries and It(M) is a complete intersection of codimension (m − t +
1)(n − t+ 1), then t = 1 or t = m = n.

(ii) If L has no invertible entries and It(L) is a complete intersection of codimension (m − t +
1)(n − t+ 1) − 1, then t = 1 or t = m = n− 1.

Proof. (i) The t× t minors of a generic matrix U = [xij ] are a minimal system of generators of It(U)
since they are K-linearly independent. By Theorem 3.5 in [2] it follows that the minors of the t× t
submatrices of M are a minimal system of generators of It(M). If It(M) is a complete intersection,
then

µ(It(M)) =

(

m

t

)(

n

t

)

= ht It(M) = (m− t+ 1)(n − t+ 1).

Computations yield

[m · . . . · (m− t+ 2)][n · . . . · (n− t+ 2)] = [t · . . . · 2][t · . . . · 2].

Both sides of the equality contain the same number of terms, and t − i 6 m − i 6 n − i for all
i = 0, . . . , t− 2. So the equality holds if and only if t = 1 or t = m = n.
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(ii) For a generic matrix M = [xij], the minors of the t× t submatrices that do not involve the
entry xmn are a minimal system of generators of It(L). This follows e.g. from the observation that
they are linearly independent. By Theorem 3.5 in [2], if we substitute Fij for xij in a minimal system
of generators of It(L), we obtain a minimal system of generators for It(L) in the case M = (Fij)
and ht It(L) = (m − t + 1)(n − t + 1) − 1. In particular, the cardinality of a minimal generating
system for It(L) is in both cases

µ(It(L)) =

(

m

t

)(

n

t

)

−

(

m− 1

t− 1

)(

n− 1

t− 1

)

.

If It(L) is a complete intersection, then

ht It(L) =

(

m

t

)(

n

t

)

−

(

m− 1

t− 1

)(

n− 1

t− 1

)

= (m− t+ 1)(n − t+ 1) − 1. (1)

It follows that

(mn− t2)(m− 1) · . . . · (m− t+ 1)(n − 1) · . . . · (n− t+ 1) = (t!)2[(m− t+ 1)(n − t+ 1) − 1]

By Lemma 1.11 we have that if t 6= 1,m, then the left hand side of the equality is greater than
(t!)2(m− t+ 1)(n − t+ 1). This is a contradiction, so t = 1 or t = m. Moreover, if t = m then (1)
simplifies to

(

n

m

)

−

(

n− 1

m− 1

)

= n−m

or equivalently to
(

n− 1

m

)

=
(n − 1) · . . . · (n−m)

m!
= n−m.

Therefore m = 1 or m = n − 1. Hence either t = 1 and It(L) is generated by the entries of L, or
t = m = n − 1 and It(L) corresponds to a hypersurface (whose equation is the determinant of the
first m columns of M).

Definition 1.13. Let X ⊂ P
r be a scheme. We say that X is generically complete intersection if it

is locally complete intersection at all its components. That is, if the localization (IX)P is generated
by an RP -regular sequence for every P minimal associated prime of IX .

We say that X is locally complete intersection outside a subscheme of codimension d in P
r if the

localization (IX)P is generated by an RP -regular sequence for every P ⊇ IX prime of ht P 6 d− 1.

We say that X is generically Gorenstein, abbreviated G0, if it is locally Gorenstein at all its
components. That is, if the localization (IX)P is a Gorenstein ideal for every P minimal associated
prime of IX .

Remark 1.14. The locus of points at which a scheme fails to be locally complete intersection
is closed. Therefore, a scheme of codimension c in P

r is locally complete intersection outside a
subscheme of codimension c+ 1 in P

r if and only if it is generically complete intersection. Both of
these assumptions imply that the scheme is generically Gorenstein.

We now prove two results that relate the height of the ideal of (t − 1)-minors of M with local
properties of the scheme defined by the vanishing of the t-minors of M or L. The notation is as in
Definition 1.3.

Theorem 1.15. Let X be a determinantal scheme with defining matrix M , IX = It(M). Let
c = (m− t+ 1)(n− t+ 1) be the codimension of X. Assume that X is not a complete intersection,
i.e. t 6= 1 and t,m, n are not all equal. Let d > c+1 be an integer. Then the following are equivalent:

i) X is locally complete intersection outside of a subscheme of codimension d in P
r.
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ii) ht It−1(M) > d.

Proof. (1) =⇒ (2): let P ⊇ It(M) be a prime ideal of height c 6 ht P 6 d − 1. In order to prove
(2), it suffices to show that P 6⊇ It−1(M). Let MP denote the localization of M at P . The matrix
MP can be reduced after invertible row and column operations to the form

MP =

[

Is 0
0 B

]

,

where Is is an identity matrix of size s× s, s 6 t, 0 represents a matrix of zeroes, and B is a matrix
of size (m− s)× (n− s) that has no invertible entries. By assumption, It(M)P ⊆ RP is a complete
intersection ideal. Since It(MP ) = It−s(B) and B has no invertible entries, it follows by Lemma 1.12
that either t − s = 1, or t − s = m − s = n − s. If the latter holds, then t = m = n and X is a
hypersurface. Then t− s = 1 and It−1(MP ) = RP , so P 6⊇ It−1(M).

(2) =⇒ (1): let P ⊇ It(M) be a prime of height c 6 ht P 6 d − 1. The thesis is proven if we
show that It(M) is locally generated by a regular sequence at P . Since ht P < ht It−1(M), then
P 6⊇ It−1(M), and the localization MP of M at P can be reduced, after invertible row and column
operations, to the form

MP =

[

It−1 0
0 B

]

,

where It−1 is an identity matrix of size (t− 1)× (t− 1), 0 represents a matrix of zeroes, and B is a
matrix of size (m− t+ 1) × (n− t+ 1). Since PRP ⊇ It(MP ) = I1(B), we have

µ(It(M)P ) 6 (m− t+ 1)(n − t+ 1) = c = ht It(M)P .

Then It(M) is locally generated by a regular sequence at P .

Remark 1.16. Assume that X is not a complete intersection. For d = c + 1, the conclusion of
Theorem 1.15 can be restated as: X is generically complete intersection if and only if ht It−1(M) >
ht It(M).

The implication (2) =⇒ (1) of Theorem 1.15 clearly holds true without the assumption that
X is not a complete intersection. The next example shows that the assumption that X is not a
complete intersection is necessary for the implication (1) =⇒ (2).

Example 1.17. Let F ∈ R be a homogeneous form and consider the t× t matrix

M =

















F 0 . . . . . . 0
0 F 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 F

















.

Let X ⊆ P
r be the scheme with IX = It(M) = (F t). Then X is a hypersurface, hence a com-

plete intersection, therefore locally complete intersection outside any subscheme. However the ideal
It−1(M) = (F t−1) defines a hypersurface in P

r, hence ht It−1(M) = 1.

The following proposition gives a sufficient condition for the scheme defined by It(L) to be
generically complete intersection.

Proposition 1.18. Let M = [Fij ] be a homogeneous matrix of size m × n. Let L be the subset
of M consisting of all the entries except for Fmn. Let N be the submatrix obtained from M by
deleting the last row and column, and let It−1(N) be the ideal generated by the minors of size
(t−1)× (t−1) of N . Let Y be the scheme corresponding to the ideal It(L). Assume that ht It(L) =
c− 1 = (m− t+ 1)(n− t+ 1)− 1 and ht It−1(N) = c. Then Y is generically complete intersection.
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Proof. Let P be a minimal associated prime of IY = It(L), then P 6⊇ It−1(N). Denote by LP ,NP

the localizations of L,N at P . Then NP ⊆ LP contains an invertible minor of size t − 1. We can
assume without loss of generality that the minor involves the first t − 1 rows and columns. After
invertible row and column operations (that involve only the first t− 1 rows and columns) we have

LP =

[

It−1 0
0 B

]

,

where B is the localization at P of the subset obtained by removing the entry in the lower right
corner from the submatrix of M consisting of the last m − t + 1 rows and n − t + 1 columns. We
have

µ((IY )P ) = µ(I1(B)) 6 (m− t+ 1)(n− t+ 1) − 1 = ht (IY )P .

Then IY is locally generated by a regular sequence at P , i.e. Y is generically complete intersection.

Remark 1.19. By Proposition 1.18, the condition that ht It−1(N) = c implies that Y contains
a determinantal subscheme X ′ of codimension 1, whose defining ideal is IX′ = It−1(N). Notice
that whenever this is the case, Y is generically complete intersection, hence it is G0. Under this
assumption we have a concept of generalized divisor on Y (see [14] about generalized divisors). Then
X ′ is a generalized divisor on Y . Proposition 1.18 proves that the existence of such a subscheme
X ′ of codimension 1 guarantees that Y is locally a complete intersection. Notice the analogy with
standard determinantal ([20]) and symmetric determinantal schemes ([11]).

2. Heights of ideals of minors

In this section we study the schemes associated to the matrix obtained fromM by deleting a column,
or a column and a generalized row. We assume that the ideal It(M) has maximal height according
to Remark 1.4. This section can be read independently from the rest of the paper.

As before, let M be a homogeneous matrix of size m× n with entries in R. Assume that It(M)
defines a determinantal scheme X ⊂ P

r of codimension c = (m− t+ 1)(n− t+ 1). We assume that
m,n, t are not all equal. In fact, if m = n = t then X is a hypersurface and all the results about
the heights are easily verified.

Definition 2.1. Fix a matrix O of size m × (n − 1). Following [22], we call generalized row any
row of the matrix obtained from O by applying generic invertible row operations. By deleting a

generalized row of O we mean that we first apply generic invertible row operations to O, and then
we delete a row.

A generalized entry of O is an entry in a generalized row, i.e. an entry of the matrix obtained
from O by applying generic invertible row operations. By deleting a generalized entry of O we mean
that we first apply generic invertible row operations to O, and then we delete an entry.

We start by deleting a column of M and look at the scheme defined by the t× t minors of the
remaining columns.

Proposition 2.2. Let X ⊂ P
r be a determinantal scheme with associated matrix M , IX = It(M).

Let O be the matrix obtained from M by deleting a column. Then It(O) is the saturated ideal
of a determinantal scheme Z of codimension (m − t + 1)(n − t). Moreover, Z is locally complete
intersection outside a subscheme of codimension (m− t+ 1)(n − t+ 1) in P

r.

Proof. From the Lemma following Theorem 2 in [1]

ht It(M)/It(O) 6 m− t+ 1.
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Hence ht It(O) > (m− t+ 1)(n− t+ 1)− (m− t+ 1) = (m− t+ 1)(n− t), so equality holds. Then
It(O) is the saturated ideal of a determinantal scheme Z of codimension (m − t+ 1)(n − t). Since
ht It−1(O) > ht It(M) = (m− t+ 1)(n− t+ 1), by Theorem 1.15 Z is locally complete intersection
outside a subscheme of codimension (m− t+ 1)(n − t+ 1) in P

r.

Notation 2.3. We let

ϕ : F −→ G

be the morphism of free R-modules associated to the matrix O, F = Rn−1, G = Rm.

Our goal is to prove that if we delete a generalized row of O, the minors of size t − 1 of
the remaining rows define a determinantal scheme of the same codimension as X. By the upper-
semicontinuity principle, it suffices to show that one can apply chosen invertible row and column
operations to O, then delete a row, and obtain a matrix whose t− 1 minors define a determinantal
scheme.

Theorem 2.4. Let O be as in Proposition 2.2. Deleting a generalized row of O, one obtains a matrix
N with ht It−1(N) = (m− t+ 1)(n − t+ 1).

Proof. If t = m 6 n then Im(O) defines a good determinantal scheme, and the result was proven
by Kreuzer, Migliore, Nagel, and Peterson in [22]. Assume then that t < m 6 n, and consider the
exact sequence associated to the morphism ϕ

0 −→ B −→ F
ϕ

−→ G −→ Coker ϕ −→ 0.

Deleting a row of O corresponds to a commutative diagram with exact rows and columns

0
↓

0 0 R
↓ ↓ ↓

0 −→ B −→ F
ϕ

−→ G −→ Coker ϕ −→ 0
↓ ‖ ↓ ↓

0 −→ B′ −→ F
ϕ′

−→ G
′ −→ Coker ϕ′ −→ 0

↓ ↓ ↓
0 0 0

(2)

where ϕ′ is the morphism associated to the submatrix obtained from O after deleting a row (possibly
after applying invertible row operations).

We first consider the case when m < n. Since Im(M) defines a standard determinantal scheme
and O is obtained from M by deleting a column, then Im(O) defines a good determinantal scheme
(see [20], proof of Theorem 3.6). By Proposition 3.2 in [22], we have that Coker ϕ is an ideal of
positive height in R/Im(O). Then there is a minimal generator of Coker ϕ as an R-module that is
non zero-divisor modulo Im(O). Call it f . Denote by s the multiplication map by f :

0 −→ R/Im(O)
s

−→ Coker ϕ −→ Coker s −→ 0. (3)

Since Im(O) + (f) ⊆ Ann R(Coker s), Coker s is supported on a subscheme of codimension at least

9
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ht Im(O) + 1. We have a commutative diagram with exact rows and columns

0 0
↓ ↓
R −→ R/Im(O) −→ 0
↓ ↓

F
ϕ

−→ G −→ Coker ϕ −→ 0
↓ ↓

G
′ β

−→ Coker s −→ 0
↓ ↓
0 0

Let π denote the morphism G −→ G
′ in the diagram above, and define ϕ′ = π ◦ϕ. Using the snake

lemma, one can check that

F
ϕ′

−→ G
′ β
−→ Coker s −→ 0

is exact. Therefore Coker ϕ′ = Coker s, and by taking kernels of ϕ and ϕ′ we produce a diagram as
(2).

Let P ⊂ R be a prime ideal, ht P 6 (m − t + 1)(n − t + 1) − 1. Since P 6⊇ It−1(O), by
Proposition 16.3 in [2] µ(Coker (ϕP )) 6 m − t + 1. We claim that P 6⊇ It−1(N). If P 6⊇ Im(O),
then the claim is proven. Therefore we can assume that P ⊇ Im(O). Localizing at P the short exact
sequence (3) we have that

µ(Coker (ϕ′
P )) = µ(Coker (ϕP )) − 1 6 m− t.

Here ϕP and ϕ′
P denote the localization at P of ϕ and ϕ′, respectively. Then P 6⊇ It−1(N), again

by Proposition 16.3 in [2]. Therefore the claim is proven, hence ht It−1(N) = c.

Consider now the case t < m = n, and consider the morphism ψ : Rm −→ Rm−1 defined by the
transposed of O. We have ht Im−2(O) > ht Im−1(M) = 4 > ht Im−1(O) = 2. The conditions of
Theorem A2.14 in [8] are satisfied, hence Coker ψ ⊆ R/Im−1(O) is an ideal of positive height. One
can proceed as in the previous case, constructing an exact sequence

0 −→ R/Im−1(O)
s

−→ Coker ψ −→ Coker s −→ 0. (4)

This produces a commutative diagram with exact rows and columns

0 0
↓ ↓
R −→ R/Im−1(O) −→ 0
↓ ↓

F
ψ

−→ G −→ Coker ψ −→ 0
‖ ↓ ↓

F
ψ′

−→ G
′ −→ Coker s −→ 0
↓ ↓
0 0

Let P ⊂ R be a prime ideal, ht P 6 (m− t+ 1)2 − 1. Since P 6⊇ It−1(O), by Proposition 16.3 in [2]
µ(Coker (ψP )) 6 m− t+1. We claim that P 6⊇ It−1(N), where N is the matrix corresponding to ψ′.
If P 6⊇ Im−1(O), then the claim is proven. Therefore we can assume that P ⊇ Im−1(O). Localizing
at P the short exact sequence (4) we have that

µ(Coker (ψ′
P )) = µ(Coker (ψP )) − 1 6 m− t.

10



A generalized Gaeta’s Theorem

Here ψP and ψ′
P denote the localization at P of ψ and ψ′, respectively. Then P 6⊇ It−1(N), again

by Proposition 16.3 in [2]. Therefore the claim is proven, hence ht It−1(N) = (m− t+ 1)2.

The following is a straightforward consequence of Proposition 2.2 and Theorem 2.4.

Corollary 2.5. Let X ⊂ P
r be a determinantal scheme with associated matrix M , IX = It(M).

Delete a column of M , then a generalized row, to obtain the matrix N . Then the ideal It−1(N)
defines a determinantal scheme X ′ of the same codimension as X.

The next corollary is obtained by repeatedly applying Proposition 2.2 and Theorem 2.4.

Corollary 2.6. Let M be a homogeneous matrix of size m × n with entries in R. Assume that
ht It(M) = (m− t+ 1)(n− t+ 1). Delete t− 1 columns and t− 1 generalized rows. The remaining
entries form a regular sequence.

Remark 2.7. Under the assumptions of Corollary 2.6 it is clear that for any submatrix H consisting
of n− t+ 1 columns of M

ht I1(H) > ht It(M) = (m− t+ 1)(n − t+ 1).

What we prove in Corollary 2.6 is exactly that if we apply generic invertible row operations to
M , then pick any n − t + 1 columns as H and delete any t − 1 rows of H, the height of the ideal
defined by the entries does not decrease. So after applying generic invertible row operations to M ,
the matrix has the property that the entries of any submatrix of M of size (m− t+ 1)× (n− t+ 1)
form an R-regular sequence.

Apply generic row operations to M and then delete an entry, to obtain the subset L ⊂ M .
Then delete the row and the column to which the element in M \ L belongs. Call N the matrix
obtained. Notice that N is obtained from M by deleting a column and a generalized row. Delete
a (generalized) entry of N to obtain the set K. We have K ⊂ N ⊂ L ⊂ M . Below we study the
relation between the heights of It(M), It(L), It−1(N), It−1(K).

Theorem 2.8. Let M be a homogeneous matrix of size m × n with entries in R. Assume that
ht It(M) = (m − t + 1)(n − t + 1). Let L be the subset of M obtained by deleting a generalized
entry. To fix ideas, assume this is the entry in position (m,n). Let K be the subset obtained from
M by deleting the last row and column, and the (generalized) entry in position (m−1, n−1). Then

ht It(L) > ht It−1(K).

Proof. By contradiction, suppose that h = ht It(L) < ht It−1(K). Let P be a minimal associated
prime of It(L) of height h. Then P 6⊇ It−1(K). Denote by KP , LP and MP the localizations at P of
K,L and M . Since P 6⊇ It−1(K), then KP contains an invertible submatrix A of size (t−1)×(t−1).
Since KP ⊂ LP , A is a submatrix of LP which involves neither the last row, nor the last column.
Moreover, A cannot involve both row m− 1 and column n− 1. To fix ideas, assume that A involves
the first t− 1 rows and columns. By applying invertible row and column operations to MP , we have

MP ∼

[

It−1 0
0 BP

]

.

Notice that the row and column operations can be chosen so that they only affect the rows and
columns of A. Therefore BP is the localization at P of the submatrix B obtained from M by deleting
the first t− 1 rows and columns. The same operations yield

LP ∼

[

It−1 0
0 CP

]

.

11
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Here C is obtained from B by removing the entry in the lower right corner, and CP denotes its
localization at P . By Corollary 2.6 the entries of B, hence of C, form a regular sequence in R.
Moreover I1(C) ⊆ P , since P ⊇ It(L). Therefore the entries of CP form a regular sequence in RP ,
and

ht It(L) = ht It(LP ) = ht I1(CP ) = c− 1.

But this is a contradiction, since ht It−1(K) 6 c− 1.

Corollary 2.9. Let M,L be as above. If ht It(M) = (m− t+ 1)(n − t+ 1), then

ht It(L) = (m− t+ 1)(n − t+ 1) − 1.

Moreover, It(L) is generically complete intersection.

Proof. Let Li be the subset obtained from L by deleting the last i rows and columns and the entry
in position (m− i, n − i), 1 6 i 6 t− 1. By repeatedly applying Theorem 2.8, one has

ht It(L) > ht It−1(L1) > . . . > ht I1(Lt−1) = (m− t+ 1)(n − t+ 1) − 1. (5)

The last equality follows from Corollary 2.6, where we show that the entries of the submatrix of M
consisting of the last m− t+1 rows and the last n− t+1 columns form a regular sequence (see also
Remark 2.7). Then ht It(L) = (m − t + 1)(n − t + 1) − 1. Let N be obtained from M by deleting
the last row and column. By Theorem 2.4 we have ht It−1(N) = (m− t+ 1)(n− t+ 1). Then It(L)
is generically complete intersection by Proposition 1.18, since

ht It−1(N) = (m− t+ 1)(n − t+ 1) > ht It(L).

Remark 2.10. As a consequence of Corollary 2.9, we obtain that

ht It(M)/It(L) 6 1. (6)

Since we are working under the assumption that ht It(M) = (m− t+ 1)(n − t+ 1), the inequality
(6) is equivalent to ht It(L) = (m− t+ 1)(n − t+ 1) − 1. We believe that the inequality (6) holds
even without the assumption that ht It(M) = (m− t+ 1)(n − t+ 1), however we were not able to
prove this.

Starting from a determinantal scheme X we thus can produce schemes X ′ and Y such that X ′

is determinantal and both X and X ′ are generalized divisors on Y . We summarize these results in
the next statement.

Theorem 2.11. Let X be a determinantal scheme with defining matrix M , IX = It(M). Let
c = (m− t+ 1)(n− t+ 1) be the codimension of X ⊂ P

r. Let N be the submatrix obtained from M
by deleting a generalized row and a column. Then It−1(N) is the saturated ideal of a determinantal
scheme X ′ ⊂ P

r of codimension c. Let L be the subset obtained fromM by deleting the (generalized)
entry that belongs to the row and column that appear in M and not in N . Let It(L) be the ideal
generated by the minors of size t × t of L. Then It(L) is the saturated ideal of an arithmetically
Cohen-Macaulay, generically complete intersection scheme Y of codimension c− 1, that contains X
and X ′ as generalized divisors.

3. The Theorem of Gaeta for minors of arbitrary size

A classical theorem of Gaeta ([9]) proves that every standard determinantal codimension 2 sub-
scheme of P

r can be CI-linked in a finite number of steps to a complete intersection. It follows from
the Theorem of Hilbert-Burch that every arithmetically Cohen-Macaulay scheme of codimension 2
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belongs to the CI-liaison class of a complete intersection. The result was reproven and stated in the
language of liaison theory by Peskine and Szpiro in [25]. In Chapter 3 of [20], Gaeta’s Theorem is
regarded as a statement about standard determinantal schemes of codimension 2, and extended to
standard determinantal schemes of arbitrary codimension. With these in mind, we wish to extend
the result to the larger class of determinantal schemes. Determinantal schemes include the standard
determinantal ones. More precisely, the family of standard determinantal schemes coincides with
the determinantal schemes defined by maximal minors (see Remark 1.6 (ii)).

The next theorem generalizes Gaeta’s Theorem, Theorem 3.6 of [20], and Theorem 4.1 of [14],
to whose argument our proof is inspired. Our result is the analogue of Theorem 2.3 of [11] for a
matrix that is not symmetric. A special case of Theorem 3.1 for a matrix of indeterminates follows
also from the main result in [10].

Theorem 3.1. Any determinantal scheme in P
r can be obtained from a linear variety by a finite

sequence of ascending elementary G-biliaisons.

Proof. Let X ⊂ P
r be a determinantal scheme. We use the notation of Definition 1.3. Let M = [Fij ]

be a homogeneous matrix whose minors of size t × t define X. Let c be the codimension of X,
c = (m − t + 1)(n − t + 1). If t = 1 or t = m = n then X is a complete intersection, therefore we
can perform a finite sequence of descending elementary CI-biliaisons to a linear variety. In fact, let
X be a complete intersection with IX = (F1, . . . , Fc), degFi = di, 1 6 d1 6 . . . 6 dc. If dc = 1 then
X is a linear variety. Assume that dc > 1 and let Y ⊃ X be the complete intersection cut out by
F1, . . . , Fc−1. X is a hypersurface section divisor on Y . Let X ′ ⊂ Y be a hyperplane section divisor
on Y , X ′ is a complete intersection scheme cut out by L,F1, . . . , Fc−1 for some linear form L. We
have

X ∼ dcX
′ = X ′ + (dc − 1)X ′

where ∼ denotes linear equivalence of generalized divisors on Y . It follows that X is obtained from
X ′ by an ascending elementary CI-biliaison of degree dc−1. Moreover, X ′ is a complete intersection
cut out by hypersurfaces of degrees 1, d1, . . . , dc−1. Repeating this procedure, we obtain X via at
most c ascending CI-biliaisons from a linear variety.

If X is not a complete intersection then t > 2, and t < m if m = n. After applying generic
invertible row operations to M , we can assume that the subset L and the submatrix N of Theo-
rem 2.11 are obtained from M by deleting the entry in position (m,n), or the last row and column,
respectively. Let Y be the scheme with associated saturated ideal

IY = (Mi1,...,it;j1,...,jt | it 6= m or jt 6= n).

By Corollary 2.9 (see also Theorem 2.11), Y is arithmetically Cohen-Macaulay and generically
complete intersection. In particular, it satisfies the property G0. The scheme Y has codimension
c− 1, and X is a generalized divisor on Y . Therefore a biliaison on Y is a G-biliaison, in particular
it is an even G-liaison (see [20] and [14] for a proof).

Let N be the matrix obtained from M by deleting the last row and column. N is a homogeneous
matrix of size (m−1)×(n−1). Let X ′ be the scheme cut out by the (t−1)×(t−1) minors of N . By
Corollary 2.5 (and Theorem 2.11) X ′ is a generalized divisor on Y . We denote by H a hyperplane
section divisor on Y . We claim that

X ∼ X ′ + aH for some a > 0,

where ∼ denotes linear equivalence of generalized divisors on Y . It follows that X is obtained by an
ascending elementary G-biliaison from X ′. Repeating this argument, after t−1 biliaisons we reduce
to the case t = 1, when the scheme X is a complete intersection. Then we can perform descending
CI-biliaisons to a linear variety.
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Let IX|Y , IX′|Y be the ideal sheaves on Y of X and X ′. In order to prove the claim we must
show that

IX|Y
∼= IX′|Y (−a) for some a > 0. (7)

To keep the notation simple, we denote both an element of R and its image in R/IY with the same
symbol. By definition, the ideal of Y is generated by the minors of size t× t of M , except for those
that involve both the last row and the last column. Therefore a minimal system of generators of
IX|Y is given by

IX|Y = (Mi1,...,it−1,m;j1,...,jt−1,n | 1 6 i1 < . . . < it−1 6 m− 1, 1 6 j1 < . . . < jt−1 6 n− 1).

A minimal system of generators of IX′|Y = H0
∗ (IX′|Y ) = It−1(N)/IY is given by the images in the

coordinate ring of Y of the minors of N of size (t− 1) × (t− 1)

IX′|Y = (Mi1,...,it−1;j1,...,jt−1
| 1 6 i1 < . . . < it−1 6 m− 1, 1 6 j1 < . . . < jt−1 6 n− 1).

Minimality of both systems of generators can be checked with a mapping cone argument, using the
fact that the t× t minors of M,L,N are minimal systems of generators of IX , IY , IX′ respectively.

In order to produce an isomorphism as in (7), it suffices to observe that the ratios

Mi1,...,it−1,m;j1,...,jt−1,n

Mi1,...,it−1;j1,...,jt−1

(8)

are all equal as elements of H0(KY (a)), where KY is the sheaf of total quotient rings of Y . Then
the isomorphism (7) is simply given by multiplication by that element. Moreover, we can compute
the value of a as

deg(Mi1,...,it−1,m;j1,...,jt−1,n) − deg(Mi1 ,...,it−1;j1,...,jt−1
) = deg(Fm,n).

Equality of all the ratios in (8) follows if we prove that

Mi1,...,it−1,m;j1,...,jt−1,n ·Mk1,...,kt−1;l1,...,lt−1
−Mk1,...,kt−1,m;l1,...,lt−1,n ·Mi1,...,it−1;j1,...,jt−1

∈ IY

for any choice of i, j, k, l. This follows from Lemma 2.4 and Lemma 2.6 in [11]. In those two lemmas,
the result is proven in the case m = n. The proof however applies with no changes to the situation
when m 6= n. This completes the proof of the claim and of the theorem.

Theorem 3.1 together with standard results in liaison theory imply that every determinantal
scheme is glicci.

Corollary 3.2. Every determinantal scheme X can be G-bilinked in t − 1 steps to a complete
intersection, whenever X is defined by the minors of size t×t of a homogeneous matrix. In particular,
every determinantal scheme is glicci.

We wish to emphasize that for a scheme of codimension 2 the following are all equivalent: being
aCM, determinantal, licci, obtained from a linear variety by ascending CI-biliaison. Moreover, in
codimension 2 CI-liaison is equivalent to G-liaison, and even CI-liaison is equivalent to CI-biliaison.
In higher codimension these concepts diverge (as shown e.g. in [13] and [15]).

In this regard, notice that standard determinantal schemes are in general not licci (i.e. they
do not belong to the CI-linkage class of a complete intersection). This follows from the results
established in [18] (see Corollary 5.13), and was already shown in [20]. In particular, determinantal
scheme are glicci but in general not licci.
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