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Zaremba’s Conjecture for Geometric
Sequences: An Algorithm

Elias Dubno

Abstract. Even though Zaremba’s conjecture remains open, Bourgain and Kontorovich
solved the problem for a full density subset. Nevertheless, there are only a handful of
explicit sequences known to satisfy the strong version of the conjecture, all of which were
obtained using essentially the same algorithm. In this note, we provide a refined algorithm
using the folding lemma for continued fractions, which both generalizes and improves on the
old one. As a result, we uncover new examples that fulfill the strong version of Zaremba’s
conjecture.

1. INTRODUCTION. In 1971, S. K. Zaremba [1] conjectured that every positive
integer can be obtained as the denominator of a continued fraction with all partial quo-
tients bounded by some absolute constant. More explicitly, he postulated the existence
of some uniform bound A ∈ N such that for any integer d ≥ 2, there is a reduced
fraction b

d
= [0, a1, a2, . . . , an] satisfying max aj ≤ A.

Definition 1. We say that such an integer d is A-Zaremba.

Here, b

d
= [0, a1, a2 . . . , an] denotes the simple continued fraction expansion

b

d
= 1

a1 + 1

a2 + 1

. . . + 1

an

,

where the integers aj ≥ 1 are called the partial quotients of b

d
. Every rational number

has a finite continued fraction expansion which is unique if we require an > 1.
In its strongest form, Zaremba’s conjecture even specifies the value of A, namely

A = 5. The simple explanation is that for A = 4 there are known counterexam-
ples (d = 6, 54, 150), while there are none for A = 5. Hence we may reformulate
Zaremba’s strong conjecture as follows: every integer d ≥ 2 is 5-Zaremba.

To this day, the conjecture remains unproven. Nevertheless, a significant break-
through emerged in 2014, when Bourgain and Kontorovich [2] confirmed the conjec-
ture with A = 50 through an intricate usage of the circle method for a subset of full
density.

Theorem 2 ([2], Theorem 1.2). Let A = 50. As N −→ ∞, we have

#{d ≤ N | d is A-Zaremba}
N

−→ 1.

By refining their methods, Huang [3] strengthened their result, showing that one
may also take A = 5.

doi.org/10.1080/00029890.2024.2323902
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2. EXPLICIT CONSTRUCTIONS. In addition to its inherent interest, the problem
of bounding partial quotients plays an important role in the theory of good lattice
points for numerical integration or generating pseudorandom numbers, which is also
the context in which Zaremba originally studied the matter. (We refer to the survey
[4] for further elaboration.) Due to those reasons, there exists an interest in explicit
examples.

The first concrete examples were exhibited by Niederreiter [5] who showed that
powers of 2, 3, and 5 satisfy Zaremba’s strong conjecture. A similar result for powers
of 6 was obtained in 2002 by Yodphotong and Laohakosol [6].

The proofs of these results are nearly identical and can be viewed as specific in-
stances of the same algorithm. This algorithm can be roughly summarized as follows:

Algorithm 3. If d satisfies some mild conditions, then all powers of d are A-Zaremba
with A = d − 1.

We will go into more details on this algorithm in the next section.
As an application of this algorithm, Niederreiter (and later Yodphotong and Lao-

hakosol) found concrete examples of geometric sequences satisfying Zaremba’s strong
conjecture.

Corollary 4. Powers of 2, 3, 5, and 6 are 5-Zaremba.

Our main result in this note is a new and refined algorithm which generalizes and
improves on the old bound.

Algorithm 5. Let d = x2y, where x, y are positive integers with xy ≥ 4. If d as well
as xd are (xy − 1)-Zaremba such that the first and last partial quotients satisfy

2 ≤ a1, an ≤ xy − 2, (1)

then all powers of d are A-Zaremba with A = xy − 1.

Remark 6. For each power of d as denominator, the algorithms imply the existence
of a suitable numerator such that the fraction is A-Zaremba. However, they do not
provide any information on how many such numerators exist. Quantitative results of
this kind have for example been obtained by Kan and Krotkova in [7, Theorems 4 &
5].

Before we further investigate our refined algorithm, we present new examples sat-
isfying Zaremba’s strong conjecture as an immediate corollary.

Corollary 7. Powers of 12 and 18 are 5-Zaremba.

Proof. First, consider x = 2 and y = 3. Then d = x2y = 12 and A = xy − 1 = 5. It
suffices to check that

5

12
= [0, 2, 2, 2] and

5

24
= [0, 4, 1, 4]

satisfy (1) to deduce that all powers of 12 are 5-Zaremba.
Similarly, taking x = 3, y = 2 and observing

5

18
= [0, 3, 1, 1, 2] and

17

54
= [0, 3, 5, 1, 2]

is enough to conclude that all powers of 18 are 5-Zaremba.
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Note that the value of A obtained with our new algorithm is given by xy − 1, com-
pared to x2y − 1 with the old one. Therefore, for numbers d = x2y that are non-
squarefree, i.e., with x �= 1, our new bound improves on the old one, whereas for
x = 1 we recover the bound from the old algorithm.

Remark. Between the acceptance and publication of this note, Shulga [8] derived
a radical bound for Zaremba’s Conjecture generalizing our result. In particular, he
proves that all numbers of the form 2n3m are 5-Zaremba.

3. IDEA OF ALGORITHM 3. At the heart of both the old and the new algorithm
lies a famous construction commonly known as the folding lemma [9, 10], which is of
significance on its own.

Theorem 8 (Folding Lemma). Let b

d
= [0, a1, a2, . . . , an] be a reduced fraction, and

let z ≥ 1 be a positive integer. Then the fraction

b

d
+ (−1)n

zd2
= zbd + (−1)n

zd2

is reduced and its continued fraction expansion is given by

zbd + (−1)n

zd2
= [0,a1, a2, . . . , an−1, an, z − 1, 1, an − 1, an−1, an−2, . . . , a1],

where we use the convention that [. . . , a, 0, a′, . . . ] = [. . . , a + a′, . . . ].

The following classical matrix representation helps prove the folding lemma.

Theorem 9. For x = [0, a1, a2, . . . ] and for all m ≥ 1, we have
(

0 1
1 0

)(
a1 1
1 0

)(
a2 1
1 0

)
. . .

(
am 1
1 0

)
=

(
pm pm−1

qm qm−1

)
,

where pm

qm
= [0, a1, . . . , am] denotes the m-th convergent to x.

Since taking transposes in the matrix product above results in flipping the order of
the partial quotients, the folding lemma now follows directly from

(
pn pn−1

qn qn−1

)(
z − 1 1

1 0

) (
1 1
1 0

) (
qn − qn−1 pn − pn−1

qn−1 pn−1

)

=
(

zpnqn + (−1n) ∗
zq2

n ∗
)

.

Definition 10. We say that we obtain the reduced fraction zbd+(−1)n

zd2 by applying a

z-fold to b

d
, and we write

b

d

z−→ ∗
zd2

.

We omit writing down the explicit numerator when applying the folding lemma,
as we are only interested in the denominator and we do not have to keep track of
the numerator when we want to apply it successively: the new denominator does not
depend on the previous numerator. This is what makes the folding lemma so handy!
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There is one technicality we have to be aware of: as mentioned in the introduction,
any rational number has a unique continued fraction expansion if we require the last
partial quotient to satisfy an > 1. To avoid any problems and ensure that this condition
is preserved, we will apply the folding lemma only to continued fractions with a1 > 1.

Using this convention, the multiset of partial quotients of ∗
zd2 after one z-fold is

given by {a1, . . . , an, z − 1, 1, an − 1} if z > 1 and {a1, . . . , an−1, an + 1, an − 1} if
z = 1. So imposing the right conditions on z ensures that if d is A-Zaremba then
so is zd2.

But how can one actually utilize the folding lemma to produce sequences of A-
Zaremba integers? For instance, suppose that b

d
= [0, a1, . . . , an] is A-Zaremba and

assume that 1 < a1, an < A. Then we can apply repeated 1-folds to b

d
:

b

d

1−→ ∗
d2

1−→ ∗
d22

1−→ ∗
d23

1−→ . . . .

This way we find that all elements of the sequence
(
d2k)

k≥0
are A-Zaremba. (See also

[11].) Some may already be happy with that, but others may note that such sequences
are of doubly-exponential growth, and wonder if one could do better. And indeed,
Niederreiter showed that we can! Let us sketch the idea of Algorithm 3.

Sketch. Let A = d − 1 and suppose that ∗
dk is A-Zaremba such that the first and last

partial quotients satisfy 2 ≤ a1, an < A. Observe that we can apply arbitrarily many
1-folds and d-folds to ∗

dk and always obtain a new power of d as denominator which
is also A-Zaremba.

Now all we have to do is check the first few cases (i.e., dk for small values of k) by
hand, and then finish off using a simple inductive argument as follows: take any integer
k ≥ 2. Assume that dm is A-Zaremba for all m < k (and satisfies the mild conditions
on the first and last partial quotient). If k = 2m is even, then we apply a 1-fold to ∗

dm

to show that dk is A-Zaremba. Similarly if k = 2m + 1 is odd, we apply a d-fold to
∗

dm .

So if we want to find sequences of exponential growth that satisfy Zaremba’s strong
conjecture, the strategy from Algorithm 3 reaches its limits at powers of 6.

4. PROOF OF ALGORITHM 5. Consider a positive integer d of the form d = x2y.
Then we can apply an x-fold followed by a y-fold to any ∗

dk and obtain a new power
of d in the denominator:

∗
dk

x−→ ∗
xd2k

y−→ ∗
y(xd2k)2

= ∗
yx2d4k

= ∗
d4k+1

.

We use this observation in combination with a more complicated inductive argu-
ment to demonstrate Algorithm 5.

Proof of Algorithm 5. By assumption, ∗
d

satisfies (1). Reading off the folding lemma
we note that for any z ∈ {1, . . . , xy}, the resulting fraction after performing a z-fold

∗
d

z−→ ∗
zd2

also satisfies (1), and hence zd2 is (xy − 1)-Zaremba as well.
We shall prove by strong induction that dk satisfies (1) for all k ≥ 1. First, we show

that this holds for a special class of k’s.
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Lemma 11. Let d = x2y be as in Algorithm 5. All powers dk, where k is of the form
k = 2j − 1, satisfy (1) for all j ≥ 1.

Proof. For j = 1 = k, this is true by assumption, so suppose that j ≥ 2.
Since ∗

xd
satisfies (1) by assumption as well, we can apply (j − 2) xy-folds followed

by a single y-fold to ∗
xd

. As explained above, the resulting fraction will satisfy (1), and

as we show now, its denominator is given by d2j −1.

∗
xd

xy−→ ∗
(xy)(xd)2

xy−→ ∗
(xy)3(xd)4

xy−→ . . .
xy−→ ∗

(xy)2j−2−1(xd)2j−2

y−→ ∗
y(xy)2j−1−2(xd)2j−1 .

We can rewrite the last denominator as

x2j−1−2+2j−1
y1+2j−1−2d2j−1 = (x2y)2j−1−1d2j−1 = d2j−1−1d2j−1 = d2j −1.

Thus all powers of the form dk, where k = 2j − 1, satisfy (1) for all j ≥ 1.

Lemma 11 takes care of the situation k = 2j − 1 for j ≥ 1. We now want to perform
the induction step. For this, take any k ∈ N. Assume that k �= 2j − 1, j ≥ 1, and
assume that k is odd. (We will deal with even k later.) Then either k ≡ 1 mod 4
or k ≡ 3 mod 4. In the latter case, we either have k ≡ 3 mod 8 or k ≡ 7 mod 8.
Continuing in this manner, we eventually find some j ≥ 1 such that

k ≡ 2j − 1 mod 2j+1.

Then m := k−(2j −1)

2j+1 is a nonnegative integer, and by Lemma 11 we may assume
m ≥ 1.

Suppose that the claim holds for dm, i.e., ∗
dm satisfies (1). We can then apply one

x-fold followed by (j − 1) xy-folds and one y-fold to ∗
dm , resulting in a new reduced

fraction satisfying (1) and with denominator dk . The calculations are similar to the
ones performed in the proof of Lemma 11.

∗
dm

x−→ ∗
x(dm)2

xy−→ ∗
(xy)x2(dm)4

xy−→ . . .
xy−→ ∗

(xy)2j−1−1x2j−1
(dm)2j

y−→ ∗
y(xy)2j −2x2j

(dm)2j+1 .

The last denominator can be rewritten as

x2j −2+2j

y1+2j −2d2j+1m = (x2y)2j −1d2j+1m = d2j −1+2j+1m = dk.

Finally, consider dk for some even power k. Then k

2 = m ∈ N, and if ∗
dm satisfies (1),

then we can apply a 1-fold to get ∗
dm

1−→ ∗
(dm)2 = ∗

d2m = ∗
dk . In both cases, it follows

that dk satisfies (1), concluding the proof of Algorithm 5.
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