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Abstract

In this article a description of the reduced phase space of the standard model coupled
to gravity is given. For space or time-like boundaries this is achieved as the reduction of a
symplectic space with respect to a coisotropic submanifold and with the BFV formalism. For
light-like boundaries the reduced phase space is described as the reduction of a symplectic
manifold with respect to a set of constraints. Some results about the Poisson brackets of
sums of functionals are also proved.
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1 Introduction

The goal of this paper is to provide a description of the Reduced Phase Space (RPS) of the
standard model coupled to gravity. We will describe it in two different ways, one through
the reduction of a symplectic manifold by a coisotropic submanifold, and the other using the
cohomological approach given by the BFV formalism—after Batalin–Fradkin–Vilkowisky [BV81;
BF83] (only in the case of space or time-like boundaries).

If we consider a globally hyperbolic space-time and a Cauchy surface Σ on it, then the reduced
phase space of a theory describes the set of possible initial conditions on Σ. In other words, not
all possible n-uples of fields on a Cauchy surface produce, under evolution in time, a solution of
the field equations on the space-time, but only a subset of them satisfying some conditions. The
RPS is exactly this subset and it is usually described as a quotient.

In more general cases we can still consider a space-time with boundary, not necessarily space-
like, and consider the RPS on the boundary. The importance of this space is related to the
possibility of analyzing in this way the structures of the theory at null-infinity (see for exam-
ple [Sac62; Pen80; Tor86; DS17] and references therein) and to the problem of locality after
quantization. Indeed, in order to encode cutting and gluing in the BV formalism, we need a de-
scription of the boundary fields given by the BFV formalism [Sch08; CMR14; CMR18]. The BV
formalism—after Batalin–Vilkowisky[BV77]— is a necessary tool to quantize—using the path
integral quantization—a gauge theory, as it is the case for General Relativity and the standard
model. Furthermore the advantages of describing the RPS as a BFV theory are also related to
the possibility of using the AKSZ construction [Ale+97] in order to construct a BV theory on a
cylindrical manifold, thus highlighting the true structure of the symmetries of the theory. This
construction has already been applied to gravity in [CCS21a]. A BFV formulation also allows
to consider manifolds with corners and induce on the corners some data containing information
about the structure of observables around punctures of the boundary (see [CC23] for gravity and
[OS20] for the connection with similar works by the quantum gravity community).
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The structure and methods of this paper follow those of [CCT21; CCS21b; CCF22; Cat+23].
In particular we combine here some of the results of the aforementioned papers, about the RPS
of gravity and gravity combined with a scalar field, a Yang–Mills field and a spinor field, in order
to get a description of the standard model by adding the corresponding interaction terms.

As in the previous articles we use the coframe formulation of General Relativity [Thi07]
(sometimes called Palatini–Cartan or Einstein–Cartan) and the Kijowski and Tulczijew (KT)
construction [KT79] which produces a symplectic space, called geometric phase space, and a set
of constraints.

Namely, one starts by taking the variation of the action of the theory and from the variation
we can distinguish between the Euler–Lagrange equations and a boundary term stemming from
possible integration by parts. It is then possible to reinterpret the boundary term as a one form
on the space of the restriction of the fields to the boundary. By taking the variation of this
one form we then obtain a closed two form. If this form is non-degenerate, it will constitute
the symplectic form of the geometric phase space (formed by the restriction of the fields to the
boundary). Otherwise, if the two form is degenerate but its kernel is regular, it is possible to
obtain the geometric phase space as the quotient by the kernel of the aforementioned degenerate
two-form. Subsequently starting from the Euler–Lagrange equations one can restrict them to the
boundary and distinguish between evolution equations (containing derivatives in the direction
normal to the boundary) and constraints. We then look for some structural constraint on the
geometric phase space so that these constraints can be expressed in the new boundary variables
(i.e. after the reduction described above). Then the RPS is defined as the reduction of the
geometric phase space with respect to these constraints.

If the constraints are of first class, i.e. the Poisson brackets of the constraints are proportional
to themselves (or zero), they define a coisotropic submanifold. If the boundary metric is non-
degenerate (i.e. a space-like or time-like boundary) it was proven in [CCS21b] that the constraints
of gravity do actually define a coisotropic submanifold. Later it was shown in [CCF22] that this
is also the case when some matter or gauge fields are added. On the other hand, note that when
the boundary metric is degenerate, i.e. we are considering a light-like or null boundary, the sets
of constraints is no longer coisotropic [CCT21; Cat+23]. In this note we show that this two-fold
behaviour (depending on the degeneracy of the boundary metric) happens also if we combine all
the fields and the interactions needed to form the coupling of the standard model and gravity.
This is proved by making a careful use of the known results and the properties of the Poisson
brackets. The BFV formalism can only be written for first class constraints and in this case it is
possible to recover cohomologically the RPS, as explained with more detail in Section 6.

In this article we focus on the problem in dimension 4. However this can be generalized
for dimensions N > 4 with some extra care. For gravity the generalization was introduced in
[CCS21b] and the results are similar to the case N = 4. We do expect a similar behaviour also
for the gravity coupled with fields and the standard model.

1.1 Overview of the results

The main result of this paper is the description of the reduced phase space of the standard
model coupled to gravity. However, in order to exploit some of the previous results about
gravity coupled to different gauge and matter fields, we first develop some results in Poisson
geometry. In particular we prove some formulas about the Poisson brackets of sum of functions
in terms of the Poisson brackets of the single addends. Namely, in Lemma 1 we prove a result for
two addends, in Theorem 2 for three addends and in Theorem 3 for four addends. Furthermore
we also prove an useful result about the Classical Master equation of the sum of two actions, in
some particular conditions (Theorem 4).
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On
:::::
From

:
the more physical point of view the main result of this article is the description

of the Reduced Phase Space of the standard model coupled to gravity. For a space or time-like
boundary this has been achieved in two ways, one more classical, as a reduction of a symplectic
space with respect to a coisotropic submanifold (defined from a set of constraints), the second
as a cohomology class of

::::::::::::
cohomological

:::::::::
resolution

:::::
with

:::::::
respect

::
to

:
a differential graded operator

using the BFV formalism. In the light-like case only the description through the geometric phase
space and the constraints can be achieved.

Let us start from the case of non-degenerate boundary, i.e. for a boundary such that the
induced metric is space or time-like. The reduced phase space of the standard model coupled
to gravity is described as follows. Using the KT construction, we first find the geometric phase
space of gravity, which turns out to be composed of the spaces of a coframe e and a connection
ω, satisfying the additional structural constraint (8). For more details about this space we refer
to the description in [CCS21b]. To the space of gravity fields we then have to add the spaces
corresponding to the bosons and fermions of the standard model together with their conjugate
momenta. In particular we have the spaces of the following fields:

1. A scalar field multiplet corresponding to the Higgs boson φ and the momentum Π, satisfying
the structural constraint (41).

2. An SU(3) × SU(2) × U(1) gauge field A and its momentum B, satisfying the structural
constraint (24).

3. A left handed ψL and a right handed ψR multiplet of spinors and their conjugate fields
ψL and ψR. Note that the presence of the spinors modifies the pure gravity structural
constraint (8) into a corrected one (33).

These space of fields form a symplectic space with symplectic form

ΩSM = $ +$A +$ψL +$ψR +$H ,

where the single terms are defined as in table 1.

$ (9) $H (42)

$A (25) $ψR/$ψR (34)

Table 1: Terms building up the symplectic form of the the standard model coupled to gravity
and their defining equations.

More details about the coupling of gravity together with each one of these fields can be found
in [CCF22].

On this geometric phase space we can define the constraints

LSMc = Lc + lψc , PSMξ = Pξ + pAξ + pψξ + pHξ + pA,ψξ + pH,Aξ ,

MSM
µ = MA

µ +mH,A
µ +mA,ψ

µ , HSM
λ = Hλ + hAλ + hψλ + hHλ + hA,ψλ + hH,Aλ + hH,ψλ

where the single terms are defined as in table 2.
These constraints are roughly speaking given by the restriction of the Euler–Lagrange equa-

tion of the Lagrangian of the standard model, together with gravity.
The main result of this paper than states that for a non-degenerate boundary metric this set

of constraints are of first class and then define a coisotropic submanifold. All the details and the
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LSMc Lc (10) lHc 0 lAc 0 lψc (35) lH,ψc 0 lH,Ac 0 lA,ψc 0

PSMξ Pξ (11) pHξ (47) pAξ (27) pψξ (36) pH,ψξ 0 pH,Aξ (48) pA,ψξ (38)

HSM
λ Hλ (12) hHλ (49) hAλ (28) hψλ (37) hH,ψλ (51) hH,Aλ (50) hA,ψλ (39)

MSM
µ MA

µ (26) mH,A
µ (46) mA,ψ

µ (40)

Table 2: Terms building up the constraints in the standard model coupled to gravity and their
defining equations.

precise expression of the Poisson brackets of the constraints are collected in Theorem 22. The
Reduced Phase Space is then given by the coisotropic reduction of the Geometric Phase Space
with respect to the zero set of these constraints.

Alternatively, resorting to the BFV formalism, we can express the reduced phase space with
an isomorphism with the zeroth cohomology class of the differential graded vector field QSM ,
the Hamiltonian vector field of the BFV action SSM . The precise details of this approach are
collected in Theorem 27.

::::
Note

:::::
that

:::
one

:::::
goal

::
of

::::
this

::::::
paper

::
is

::
to

::::
test

::::
the

:::::
ideas

::
of

::::
the

:::
KT

::::::::::
procedure

::::
and

:::
the

:::::::::
BV-BFV

:::::::
method

::
on

::
a

:::::::
realistic

:::::
case:

:::
the

:::::::::
Standard

:::::
Model

::::::::
coupled

::::
with

:::::::
gravity.

::::
The

:::::
latter

::::::
result

::::::::::
(BV-BFV)

:::
also

::::::
serves

:::
as

::
a

:::::::::::
preliminary

::::
step

:::
for

:::::::::
studying

::::
this

:::::::
system,

:::::
both

:::
at

:::
the

::::::::
classical

::::
and

:::::::::
quantum

:::::
levels,

::::::
when

::::::::::
formulated

:::
on

::
a

::::::::
manifold

:::::
with

:
a
::::::::::

boundary.
:::::

The
:::
KT

::::::::::::
construction

::
of
::::

the
::::::::
reduced

:::::
phase

:::::
space

::::::
offers

:
a
:::::::::
geometric

::::::::::
alternative

:::
to

:::::::
Dirac’s

::::::::::
procedure.

::::::
While

::::::
Dirac’s

::::::::
method

:::
not

:::::
only

:::::
tends

::
to

:::
be

::::::
more

::::::::::::
complicated,

::
it

::::
also

::::::::
presents

::::
the

::::::::
reduced

::::::
phase

:::::
space

:::
as

::
a
:::::::::
reduction

:::
of

::
a

:::::::::::
submanifold

::::::::::
determined

:::
by

:::::
first-

::::
and

:::::::::::
second-class

:::::::::::
constraints.

:::
In

:::::::::
contrast,

:::
the

::::
KT

::::::::::
procedure

:::::
yields

:::
the

::::::::
reduced

:::::
phase

:::::
space

:::
as

:::
the

:::::::::
reduction

::
of

::
a
::::::::::
coisotropic

:::::::::::
submanifold

:::::
(i.e.,

::::::::::
determined

:::
by

::::::::
first-class

::::::::::
constraints

:::::
only)

::::::
within

::
a

::::::
smaller

::::::::::
symplectic

::::::::
manifold

::::
that

::::::::
depends

:::::
solely

:::
on

:::::::::
boundary

:::::
fields.

:::::
This

:::::::
smaller

::::::::::
symplectic

::::::::
manifold

::
is

:::::
itself

:
a
::::::::::::
submanifold,

:::::::
defined

:::
by

::::::
global

::::::::::
constraints,

:::
of

::
an

:::::
open

::::::
subset

::
of

:::
an

:::::
affine

::::::
space.

:

:::
The

::::::::::
advantage

::
of

:::::::
having

::::
only

:::::::::
first-class

::::::::::
constraints

:::
is

::::
that

::::
the

:::::::
reduced

::::::
phase

:::::
space

::::
can

:::
be

::::::::::::::
cohomologically

::::::::
resolved

:::
via

::::
the

:::::
BFV

::::::::::
formalism.

:::::
This

:::::::
results

:::
in

:
a
::::::

much
:::::::
clearer

:::::::::::
description,

:::::
which

::::
not

:::::
only

:::::::::
facilitates

::::
the

:::::
study

:::
of

::::::::::
topological

:::::::::
subtleties

:::::
and

:::
the

::::::::::
discussion

::
of

::::::::::
boundary

:::::::::
conditions

::::
but

::::
also

::::::::
prepares

:::
the

:::::::
system

:::
for

::::::::::::
quantization.

:

In order to prove the aforementioned result we worked constructively by proving similar
results for gravity coupled with all the possible pairs of gauge and matter fields considered for
the standard model.

When
::::::
Finally,

:::::
when

:
dealing with a light-like boundary

:
, the results are

::::
quite

:
different. Indeed,

using the KT construction for gravity alone, we find a geometric phase space still composed by
the spaces of the coframe e and the connection ω, but with different structural constraints, given
by (54) and (55). For more details about this space we refer to [CCT21]. In order to get the
geometric phase space of the standard model coupled to gravity, we then have to add the spaces
of the fields. This goes as in the non-degenerate case written above, and in presence of spinors the
pure gravitational constraint (61) is modified into a corrected one (57). More details can be found
in [Cat+23]. On the geometric phase space one then defines the constraints LSMc , PSMξ , HSM

λ

and MSM
µ as above and the additional constraint

RSMτ = Rτ .

This set of constraints, in contrast with the non-degenerate case is now not of first class, as
proved in Theorem 37). This is a consequence of the geometry of the light-like boundary (and
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mathematically of the degeneracy of the metric). As a consequence of this fact, in the degenerate
case, providing a BFV resolution of the quotient becomes unfeasible.

1.2 How to read this paper

In this section we introduce the notation used in the paper and its logical structure.
Let us begin with the notation used for describing the geometric phase spaces of the theories

considered here. All the theories are constructed starting from gravity and then adding the
corresponding matter or gauge fields. The geometric phase space of gravity is a symplectic space
denoted by (F ∂ , $), i.e. with a roman F ∂ for the space and $ for the corresponding symplectic
form.1 The reduced phase space is then defined through the use of constraints that will be
denoted by roman capitalized letters with an index denoting the corresponding (odd) Lagrange
multiplier.

Then we add the gauge or matter fields. These theories will be denoted using letters out of
the following table:

Additional field Index
Scalar field φ

Higgs field (multiplet of scalar fields) H
Yang–Mills gauge field A

Spinor field ψ

These letters will be used as apexes as follows: the geometric phase space of a theory with
field with index f will be a direct sum F ∂ ⊕ Ff with symplectic form Ωf = $ + $f . The
constraints defining the RPS are then denoted as Xf = X + xf where X is the corresponding
constraint for gravity, xf is the additional part and Xf is the whole constraint for the coupled
theory. In case we have two or more matter or gauge fields, we simply stack indices and add
additional terms corresponding to the interactions. As an example we can consider the following
constraint (from Section 4.1):

HA,ψ
λ

= Hλ + hAλ + hψλ + hA,ψλ

Constraint of theory with a Yang–Mills field and a spinor field

λ is the Lagrange multiplier

Pure gravity constraint
Additional part containing YM fields

Additional part containing spinor fields
Additional part containing interaction

In Section 2, where we present more general results not connected to a specific theory or
constraint, we do not indicate the Lagrange multiplier associated to the constraint and we use
the letters X and Y to denote generic constraints. The Hamiltonian vector fields will be denoted
with blackboard bold letters and indices corresponding to the matter/gauge fields as defined in
(1) and (2).

For the BFV formalism we use the same conventions but here the BFV space of fields will be
denoted by a calligraphic F and the actions with a calligraphic S with the appropriate indices.

1Note that we use $ instead of the more common ω for symplectic forms in order not to confuse it with the
connection ω of the gravity coframe formulation.
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The symplectic form of the BFV space will be denoted by ΩBFV with the same convention on
the indices as before. Further technical notation is introduced in Section 2.4 and in Appendix
C, however this is not necessary for the general understanding of the main results of this paper
but only for the proofs.

1.3 Structure of the paper

This paper is structured as follows. In Section 2 we show and prove some useful identities for the
Poisson brackets of sums of functionals. Furthermore we also prove here a result for the BFV
brackets.

In Section 3 we recall the previous results about the reduced phase space of gravity (Section
3.1) and of gravity coupled with a scalar field (Section 3.2), with a Yang–Mills field (Section 3.3)
and a spinor field (Section 3.4).

Section 4 is the fundamental building block of the paper in which we describe the reduced
phase space of the theories composed of gravity and pairs of gauge and matter field. Respectively
we have gravity together with a Yang–Mills field and a spinor field in Section 4.1, then we consider
the Higgs and Yang–Mills fields in Section 4.2 and lastly a spinor field together with a scalar
field, forming the Yukawa interaction in 4.3.

Finally in Section 5 we describe the reduced phase space of gravity coupled to the standard
model as a coisotropic reduction.

Section 6 is dedicated to the BFV formulations of all the theory listed above.
In Section 7 we consider the same theories but for a boundary with induced degenerate metric.

In this case as well we divide the work starting from recalling the previous results (Sections 7.1,
7.2, 7.3 and 7.4), considering the single interactions (Sections 7.5, 7.6 and 7.7) and describing
the standard model (Section 7.8).

2 Properties of the Poisson brackets

The goal of this section is to show how to compute the Poisson brackets of particular sum of
constraints of which we already know some partial results.

2.1 Sum of two terms

As a warm up let us start from constraints composed of two terms. Let (F,$) be a symplectic
space and Ff , $f a space and a two form such that

(F ⊕ Ff ,Ωf = $ +$f )

is still symplectic. In our case (F,$) is the geometric phase space of gravity while the index f
denotes the spaces of some matter fields.

Let us suppose that we have two constraints of the following form:

Xf = X + xf , Y f = Y + yf

where X,Y ∈ C∞(F ) and xf , yf ∈ C∞(F ⊕ Ff ).
The first step towards the computation of the brackets is to find the Hamiltonian vector fields

of the functions Xf and Y f , i.e. vector fields satisfying

ιXfΩf = δXf , ιYfΩf = δY f ,

7



Let us concentrate on X, for Y is exactly the same. Let us denote by X the Hamiltonian vector
field of X with respect to $:

ιX$ = δX.

Then, if we look for an Hamiltonian vector field of the form

Xf = X + xf

we get that xf must satisfy

ιX$f + ιxf ($ +$f ) = δxf .

Then we have the following result:

Lemma 1. Using the notation introduced above, the Poisson brackets of the functions Xf and
Y f with respect to the symplectic form ΩSM are given by the following expression:

{Xf , Y f}f = {X,Y }+ ιyf δ(X + xf ) + ιxf δ(Y + yf )− ιxf ιyfΩf + ιXιY$f

where {•, •}f means that we are considering the Poisson brackets with respect to $ + $f and
{•, •} means that we are considering the Poisson brackets with respect to $.

Proof. If we expand the Poisson brackets {Xf , Y f}f we get eight terms as follows:

ιX+xf ιY+yf ($ +$f ) = ιXιY$ + ιXιyf$ + ιxf ιY$ + ιxf ιyf$

+ ιXιY$f + ιXιyf$f + ιxf ιY$f + ιxf ιyf$f .

It is then straightforward to note that the first term in this expression corresponds to {X,Y };
the sum of the second, fourth, sixth and eighth corresponds to ιyf δ(X + xf ); the sum of the
third, fourth, seventh and eighth corresponds to +ιxf δ(Y + yf ). Then we have to subtract the
eighth since we summed up it two times and to add the fifth which was left.

This lemma was tacitly used in [CCF22] and will be generalized in the next section.

2.2 Sum of three terms

Let us now consider constraints composed of the sum of three terms, the pure gravity one and
two matter/gauge fields. As before, let (F,$), (F ⊕Ff , $+$f ), (F ⊕Fg, $+$g) be symplectic
spaces such that

(F ⊕ Ff ⊕ Fg,Ωfg = $ +$f +$g)

is still symplectic. Let us suppose that we have two constraints of the following form:

Xf,g = X + xf + xg + xf,g, Y f,g = Y + yf + yg + yf,g

where X,Y ∈ C∞(F ), xf , yf ∈ C∞(F ⊕ Ff ), xg, yg ∈ C∞(F ⊕ Fg) and xf,g, yf,g ∈ C∞(F ⊕
Ff ⊕ Fg). The Hamiltonian vector fields of these constraints will satisfy

ιXf,gΩfg = δXf,g, ιYf,gΩfg = δY f,g,

Let us concentrate on X, and look for a vector field of the form Xf,g = X + xf + xg + xf,g where
X, xf , xg are such that

ιX$ = δX, ιX$g + ιxg ($ +$g) = δxg, ιX$f + ιxf ($ +$f ) = δxf (1)
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as we have seen in the previous section. We conclude that xf,g satisfies

ιxf,g ($ +$g +$f ) + ιxg$f + ιxf$g = δxf,g. (2)

Having found the Hamiltonian vector fields of the two functions Xf,g and Y f,g, we have the
following results:

Theorem 2. Using the notation introduced above, the Poisson bracket of the functions Xf,g and
Y f,g with respect to the symplectic form Ωfg are given by the following expression:

{Xf,g, Y f,g}fg = {X + xf , Y + yf}f + {X + xg, Y + yg}g − {X,Y }
+ ιyf,gδ(X + xf + xg + xf,g) + ιxf,gδ(Y + yf + yg + yf,g)− ιxf,g ιyf,gΩfg

+ ιX+xg ιY+yg$f + ιX+xf ιY+yf$g + ιxf ιygΩfg + ιxg ιyfΩfg − ιXιY($f +$g)

where {•, •}f means that we are considering the Poisson brackets with respect to $+$f , {•, •}g
means that we are considering the Poisson brackets with respect to $+$g, {•, •} means that we
are considering the Poisson brackets with respect to $, and {•, •}fg means that we are considering
the Poisson brackets with respect to Ωfg.

Proof. We recall that the Poisson brackets of two functions can be expressed in terms of their
Hamiltonian vector field and the symplectic form as

{Xf,g, Y f,g}fg = ιXf,g ιYf,gΩfg

= ι(X+xf+xg+xf,g)ι(Y+yf+yg+yf,g)($ +$f +$g).

As we have done in the proof of Lemma 1, it is sufficient to use linearity in each of the sums in
order to get 48 terms that can be rearranged as in the statement.

This result is particularly useful, since in our applications we already know the terms appear-
ing on the first row of the RHS and some of the other terms will vanish trivially.

2.3 Sum of four terms

Similarly we can consider what happens when we compute the brackets of constraints with three
matter/gauge fields. We assume that there is no triple interaction as it is the case for the standard
model. Using the same notation as in the previous section, we want to compute the brackets
between

Xf,g,h = X + xf + xg + xh + xf,g + xf,h + xg,h

Y f,g,h = Y + yf + yg + yh + yf,g + yf,h + yg,h

with respect to a symplectic form

Ωfgh = $ +$f +$g +$h.

The first step is to compute the Hamiltonian vector field of Xf,g,h with respect to Ωfgh. Call
such a vector field Xf,g,h = X + xf + xg + xh + xf,g + xf,h + xg,h + xf,g,h where the first seven
summands satisfy (1) and (2). Then it can be shown that xf,g,h must satisfy

ιxf,g,hΩfgh = −ιxf,g$h − ιxg,h$f − ιxf,h$g

The following result will simplify the computation of the constraints.
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Theorem 3. In the setting above, suppose that ιxf,g$h = ιxg,h$f = ιxf,h$g = 0. Then we have
the following formula:

{Xf,g,h, Y f,g,h}fgh = {Xf,g, Y f,g}fg + {Xf,h, Y f,h}fh + {Xg,h, Y g,h}gh
− {Xf , Y f}f − {Xg, Y g}g − {Xh, Y h}h + {X,Y }

+

cycl∑
ijk=fgh

(ιxi,j ιyk + ιyi,j ιxk)($ +$i +$j)

+

cycl∑
ijk=fgh

(ιxi,j ιyi,k + ιyi,j ιxi,k)($ +$i) +

cycl∑
ijk=fgh

(ιxiιyj + ιyiιxj )$k

where the sums are cyclic sums over the indices f, g, h.

Proof. In order to prove the theorem we can resort to Theorem 2 by defining $a = $f + $g,
$b = $h, xa = xf +xg +xf,g, xb = xh and xa,b = xf,h+xg,h. Using the hypothesis, we get that
xf,g,h = 0 and hence xa,b = xg,h + xf,h. Then the formula can be proved by carefully expanding
the term in the provided formula and summing the equal terms.

2.4 Results for the BFV brackets

Let us now prove another useful technical result for the proofs about BFV structures. Suppose
that we have a BFV structure (F ,S, $BFV ) and let S = S0 + S1 where S0 =

∑
iXi is the sum

of the constraints of the theory, S1 is the part of the BFV action linear in the antifields. Let also
$BFV = $c +$b where and $c is the classical boundary symplectic form and $b depends only
on ghosts and antifields.

Theorem 4. Let (F ,S, $BFV ) a BFV structure and let us denote S0 the part of S linear in

the ghost fields and S1 the part linear in the antifields. Let (F̃ , $̃) = (F ⊕ F2, $ + $2) be a

symplectic space, s be some functional on F̃ linear in the ghosts and Q = Q0 +Q1 + q0 + q1 be
a vector field such that

ιQ0$BFV = δS0, ιQ1$BFV = δS1,

ιq0($BFV +$2) = δs− ιQ0$2, ιq1($BFV +$2) = −ιQ1$2.

Then {S + s,S + s} = 0 if

ιQ0+q0ιQ0+q0($c +$2) + 2ιQ0+q0ιQ1+q1$b = 0, (3)

ιQ1
ιq0$c = 0. (4)

Note that the last equation defining q1 can be simplified as ιq1$2 = −ιQ1
$2 and ιq1($c +

$b) = 0.2

Proof. From the definition of Poisson bracket, we have

{S,S} = ιQ0
ιQ0

$c + 2ιQ0
ιQ1

$c + ιQ0
ιQ0

$b + 2ιQ0
ιQ1

$b + ιQ1
ιQ1

$c + ιQ1
ιQ1

$b = 0.

2Note that this is a possible solution of the equation defining q1, and since $BFV +$2 is symplectic, this is
also the unique solution to this equation.
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Note that we automatically have ιQ0ιQ0$b = 0 since Q0 has no antifields terms. Now, the
equation {S,S} = 0 can be split in three smaller ones dividing it by the number of antifields
appearing in each term:

ιQ0ιQ0$c + 2ιQ0ιQ1$b = 0.

2ιQ0ιQ1$c + ιQ1ιQ1$b = 0,

ιQ1ιQ1$c = 0

respectively for terms with no antifields, linear in antifields and quadratic in the antifields.
Let us now expand {S + s,S + s} :

{S + s,S + s} = ιQ0+q0ιQ0+q0($c +$2) + 2ιQ0+q0ιQ1+q1($c +$2) + ιQ0+q0ιQ0+q0$b

+ 2ιQ0+q0ιQ1+q1$b + ιQ1+q1ιQ1+q1($c +$2) + ιQ1+q1ιQ1+q1$b.

Using the hypothesis (3) and ιq1($c +$b) = 0, from the definition of q1, we get

{S + s,S + s} = 2ιQ0+q0ιQ1+q1($c +$2) + ιQ0+q0ιQ0+q0$b

+ ιQ1+q1ιQ1+q1$2 + ιQ1
ιQ1

$b

Once again we have ιQ0+q0ιQ0+q0$b = 0 since both Q0 and q0 have only nonzero components
in the direction of the antifields. Furthermore we have

ιQ1+q1ιQ1+q1$2 = 0

since ιQ1+q1$2 = 0. Finally, using again these relations we get

2ιQ0+q0ιQ1+q1($c +$2) + ιQ1
ιQ1

$b = 2ιQ0
ιQ1+q1$c + 2ιQ0

ιQ1+q1$2

+ 2ιq0ιQ1+q1$c + 2ιq0ιQ1+q1$2 + ιQ1
ιQ1

$b

= 2ιQ0
ιQ1

$c + 2ιq0ιQ1
$c + ιQ1

ιQ1
$b

= 2ιq0ιQ1
$c.

Hence we conclude using (4).

Remark 5. This result will be particularly useful in computing the Classical Master Equation
starting from a known BFV action and adding some terms corresponding to the additional parts
in the constraints. Indeed, as we will see, the interaction parts of the constraints do not modify
the brackets of the constraints themselves (see Theorems 14, 19 and 21) and this particular
condition is exactly encoded in (3). Hence we will have only to check (4) which will be almost
straightforward.

3 Previous results

The description of the reduced phase space of the standard model coupled to gravity is based on
some building blocks, namely the description of the RPS of Gravity in the vacuum and the RPS
of gravity together with a scalar field, a Yang–Mills field and a spinor field respectively. In this
section we recall the results contained in the articles [CS19; CCS21b; CCF22]. We start with
the description of gravity in vacuum.
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3.1 Gravity

In this article we use the coframe formulation of General Relativity. In this formulation, instead
of using the metric, the main fields of the theory are a coframe field and a principal connection.
We refer to [Tec19] for more detail about this theory and we present here only a summary.

The geometrical set-up is the following:

– An 4-dimensional differentiable oriented pseudo-Riemannian manifold M with boundary
Σ;

– A principal GL(4,R)-bundle LM called the frame bundle, which can be reduced to a prin-
cipal SO(3, 1)-bundle P ;

– An associated vector bundle V := P ×ρ V called the Minkowski bundle, where V is an 4-
dimensional real pseudo-Riemannian vector space with reference metric η =diag(1, ...,−1)

::::::::::
(1, 1, 1,−1) and ρ : SO(3, 1)→Aut(V ) is the fundamental representation of SO(3, 1).

A non-canonical identification exists between the fibers of the tangent bundle and those of
the vector bundle V equipped with the reference metric η. This identification is referred to as
the vielbein or coframe, defined as the vector bundle isomorphism e : TM → V, which can be
represented as an element of Ω1

nd(M,V), i.e. a one form on M with values in V, where the
subscript nd signifies the non-degenerate nature of the isomorphism. Moreover we can recover
the space-time metric as g = e∗η.

Remark 6. In order to shorten the notation, we will write Ωi,j := Ωi(M,∧jV) and Ωi,j∂ :=
Ωi(Σ,∧jVΣ), where the last object represents bundle-valued differential forms and will be prop-
erly defined later.

The fields of the theory are therefore the coframe e ∈ Ω1
nd(M,V) and the pull-back of the

principal connection ω ∈ A(P ) via sections of P .
The action functional of the theory is

S =

∫
M

1

2
e2Fω +

1

4!
Λe4, (5)

and its Euler–Lagrange equations are

eFω −
1

3!
Λe3 = 0 (6)

edωe = 0, (7)

where we have omitted the wedge product.3 Finally, the object Λ ∈ Ω0,0 is the so called cosmo-
logical constant.

The fields (e, ω) ∈ Ω1,1
nd × A(P ) and the action functional SPC define what we call the

Palatini–Cartan theory.
The boundary structure of the theory is obtained by means of the KT construction. We

recall here only the results and we refer to [CCS21b] for all the details. The output of the KT
construction is a symplectic space, the geometric phase space, built out of the boundary fields,
which are obtained as a pull-back of the bulk fields (e, ω) via the inclusion map ι : Σ→M , where
Σ is the boundary of M . We denote the restrictions of the fields to the boundary Σ in the very
same way of the bulk fields and denote by VΣ the restriction V|Σ. Assuming VΣ to be isomorphic

3Note that the quantities appearing in (5) form, up to multiplication by
√
|det(η)| which is omitted for ease

of notation, densities that can be integrated. For more details see [CCS21b, footnotes 5 and 6].
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to TΣ ⊕ R, we fix a nowhere vanishing section εn of the summand R and define Ω1
en(Σ,VΣ) to

be the space of bundle maps e : TΣ → VΣ such that eeeen 6= 0 everywhere.4 The boundary
action can be recovered by g∂ := ι∗g, i.e. by pulling back along the inclusion ι the bulk metric.
Equivalently we have g∂ = η(e, e). The geometric phase space for gravity in the PC formulation
for a space or time-like boundary is given by the bundle

F ∂ → Ω1
en(Σ,VΣ)

with fiber Ared(Σ) where the fields ω ∈ Ared(Σ) satisfy the structural constraint

endωe = eσ (8)

for some σ ∈ Ω1(Σ,VΣ). The corresponding symplectic form on F ∂ is given by

$ =

∫
Σ

eδeδω. (9)

For a light-like boundary the description is slightly different and will be recalled in Section
7.1. From now on, unless otherwise stated we consider only space or time-like boundaries.

On this geometric phase space one can then define some constraints. Let us define

Lc =

∫
Σ

cedωe (10)

Pξ =

∫
Σ

ιξeeFω + ιξ(ω − ω0)edωe (11)

Hλ =

∫
Σ

λen

(
eFω +

1

3!
Λe3

)
(12)

where c ∈ Ω0,2
∂ [1], ξ ∈ X[1](Σ) and λ ∈ Ω0,0

∂ [1] are (odd) Lagrange multipliers and the notation
[1] denotes that the fields are shifted by 1 in parity and are treated as odd variables.5

This set of constraints defines a coisotropic submanifold, as stated by the following theorem.

Theorem 7 ([CCS21b]). Let g∂ be non-degenerate on Σ. Then, the functionals Lc, Pξ, Hλ are
well defined on F ∂ and define a coisotropic submanifold with respect to the symplectic structure
$. In particular they satisfy the following relations

{Lc, Lc} = −1

2
L[c,c] {Lc, Pξ} = LL

ω0
ξ c

{Lc, Hλ} = −PX(ν) + LX(ν)(ω−ω0)ν −HX(n) {Pξ, Pξ} =
1

2
P[ξ,ξ] −

1

2
LιξιξFω0

{Pξ, Hλ} = PY (ν) − LY (ν)(ω−ω0)ν +HY (n) {Hλ, Hλ} = 0

where X = [c, λen], Y = Lω0

ξ (λen) and Z(ν), Z(n) are the components of Z = X,Y in the basis
(eν , en).

Hence the RPS of gravity in the PC formulation is given by the reduction of the geomet-
ric phase space F ∂ with respect to the coisotropic submanifold defined by the zero set of the
constraints (10), (11) and (12).

As announced in the introduction, we can also describe the RPS cohomologically using the
BFV formalism. See Section 6 for more details about this approach. The corresponding BFV
theory for the PC formulation of General Relativity is recalled in the following theorem:

4Note that this is an equivalent condition to that the three components of e together with en form a basis of
VΣ. Note as well that in [CCS21b] Ω1

en
(Σ,VΣ) was denoted Ω1

nd(Σ,VΣ).
5Note that this does not mean necessarily that their total parity is odd.
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Theorem 8 ([CCS21b]). Let g∂ be non-degenerate on Σ. Let F be the bundle

F −→ Ω1
en(Σ,VΣ), (13)

with local trivialisation on an open UΣ ⊂ Ω1
en(Σ,VΣ)

F ' UΣ ×Ared(Σ)⊕ T ∗
(

Ω0,2
∂ [1]⊕ X[1](Σ)⊕ C∞[1](Σ)

)
=: UΣ × Tgrav, (14)

where e ∈ UΣ and ω ∈ Ared(Σ) satisfy the modified structural constraint

endωe+
(
Lωξ εn − [c, εn]

)(a)
c†a = eσBFV (15)

for some σBFV ∈ Ω1(Σ,VΣ). Further denoting the ghost fields c ∈ Ω0,2
∂ [1], ξ ∈ X[1](Σ) and

λ ∈ Ω0,0[1] in degree one, c† ∈ Ω3,2
∂ [−1], λ† ∈ Ω3,4

∂ [−1] and ξ† ∈ Ω1,0
∂ [−1]⊗Ω3,4

∂ in degree minus
one, we define a symplectic form and an action functional on F respectively by

ΩBFV = $ +$ghost (16)

S = Lc + Pξ +Hλ + Sghost. (17)

where

$ghost =

∫
Σ

δcδc† + δλδλ† + ιδξδξ
†

Sghost =

∫
Σ

1

2
[c, c]c† − Lω0

ξ cc
† +

1

2
ιξιξFω0

c† − Lω0

ξ (λen)(n)λ† − 1

2
ι[ξ,ξ]ξ

†

+ [c, λen](ν)(ξ†ν − (ω − ω0)νc
†) + [c, λen](n)λ† − Lω0

ξ (λen)(ν)(ξ†ν − (ω − ω0)νc
†).

Then the triple (F ,ΩBFV ,S) defines a BFV structure on Σ.

Then the space of functions on the reduced phase space is isomorphic to the cohomology in
degree 0 of the Hamiltonian vector field Q of S.

3.2 Scalar field

Let us now consider gravity together with a scalar field. The action of the scalar field coupled
with gravity takes the form

Sscal = S + Sφ

where

Sφ =

∫
M

1

3!
e3Πdφ+

1

2 · 4!
e4(Π,Π) (18)

where
:::
the

::::::::
canonical

:::::::::
variables

:::
are

::::::::::::
φ ∈ C∞(M),

:::::::
playing

:::
the

::::
role

::
of

::::
the

:::::
scalar

::::
field

::::
and

::::::::::
Π ∈ Γ(V),

::
its

:::::::::
conjugate

:::::::::::
momentum,

::::
and

:
(•, •) stands for the pairing η in V. The structure of the reduced

phase space of this case was discussed in [CCF22] to which we refer for more details and insight.
In this case, the geometric phase space is the bundle

F ∂φ → Ω1
en(Σ,VΣ)⊕ C∞(Σ)
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with fiber Ared(Σ)⊕Ω
(0,1)
∂,red such that, using the same notation as before and furthermore denoting

φ ∈ C∞(Σ), Π ∈ Ω
(0,1)
∂,red, the structural constraints (8) and

(e,Π) = −dφ. (19)

are satisfied. F ∂φ is a symplectic space with symplectic form Ωφ = $ +$φ where6

$φ =

∫
Σ

1

3!
δ(e3Π)δφ. (20)

Define now on this space the following functions:

pφξ = −
∫

Σ

1

3!
e3ΠLξφ; (21)

hφλ =

∫
Σ

λen

(
1

2
e2Πdφ+

1

2 · 3!
e3(Π,Π)

)
. (22)

Then, it has been proven in [CCF22] that the functions Lc, P
φ
ξ = Pξ + pφξ , Hφ

λ = Hλ + hφλ define
a coisotropic submanifold. In particular the brackets of these functions are verbatim the same
as in the vacuum case (Theorem 7). Hence it is possible to describe the RPS as the quotient of
the geometric phase space Fφ with respect to this coisotropic submanifold. As in the vacuum
case the resolution of such quotient is given by the following BFV structure:

Theorem 9 ([CCF22]). Let Fφ be the bundle

Fφ −→ Ω1
en(Σ,VΣ)⊕ C∞(Σ),

with local trivialisation on an open UΣ

Fφ ' UΣ × Tgrav × Ω
(0,1)
∂,red

where Tgrav was defined in (14) and the additional fields are denoted by Π ∈ Ω
(0,1)
∂,red and φ ∈ C∞(Σ)

and such that they satisfy the structural constraint (19). The symplectic form and the action
functional on FS are respectively defined by

ΩBFVφ = ΩBFV +$φ,

Sφ = S + pφξ + hφλ.

Then the triple (Fφ,ΩBFVφ , Sφ) defines a BFV structure on Σ.

3.3 Yang–Mills

Similarly to the scalar field case, for the theory coupling gravity and a Yang–Mills field (with
group G and Lie algebra g), the action is

SYM = S + SA

6It is possible to redefine p := 1
3!
e3Π. The three components of Π fixed by the structural constraint (19) are

in kernel of e3 ∧ · acting on Ω
(0,1)
∂ . With this substitution, the symplectic form $φ is non-degenerate, therefore

there is no need for reduction. However, in some instances it is still convenient to use Π as it provides simpler
computations.
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where

SA =

∫
M

1

2
e2Tr(BFA) +

1

2 · 4!
e4Tr(B,B), (23)

where (•, •) is the canonical pairing in ∧2V defined in coordinates for all C,D ∈ ∧2V by (C,D) :=
CabDcdηacηbd with respect to an orthonormal basis {ua} of V .

The geometric phase space is the bundle

F ∂A → Ω1
en(Σ,VΣ)⊕AGYM

:: Σ

with fiber Ared(Σ)⊕ Ω
(0,2)
Σ,red(g) such that, denoting A ∈ AYM

Σ and B ∈ Ω
(0,2)
Σ,red(g), the structural

constraints (8) and

FA +
1

2
(e2, B) = 0 (24)

are satisfied. The symplectic form on F ∂A reads ΩA = $ +$A where

$A =

∫
Σ

Tr

(
1

2
δ(eeB)δA

)
(25)

where the trace is defined with respect to the Lie algebra g.
In order to define the reduced phase space, we introduce the following functions on F ∂A:

MA
µ :=

∫
Σ

1

2
Tr(µdA(e2B)); (26)

pAξ :=

∫
Σ

1

2
ιξe

2Tr(BFA) +
1

2
Tr{ιξ(A−A0)dA(e2B)}; (27)

hAλ :=

∫
Σ

λen

(
eTr(BFA) +

1

2 · 3!
e3Tr(B,B)

)
. (28)

Then we have the following result:

Theorem 10. [CCF22] The functions MA
µ , Lc, P

A
ξ = Pξ + pAξ , HA

λ = Hλ + hAλ define a
coisotropic submanifold with respect to the symplectic structure ΩA. In particular they have the
following mutual Poisson brackets:

{MA
µ ,M

A
µ }A = −1

2
MA

[µ,µ] {MA
µ , Lc}A = 0

{MA
µ , P

A
ξ }A = MA

L
A0
ξ µ

{MA
µ , H

A
λ }A = 0

{PAξ , PAξ }A =
1

2
PA[ξ,ξ] −

1

2
LιξιξFω0

− 1

2
MA
ιξιξFA0

{Lc, PAξ }A = LL
ω0
ξ c

{Lc, HA
λ }A = −PAX(ν) + LX(ν)(ω−ω0)ν −H

A
X(n) +MA

X(ν)(A−A0)ν
{Lc, Lc}A = −1

2
L[c,c]

{PAξ , HA
λ }A = PAY (ν) − LY (ν)(ω−ω0)ν +HA

Y (n) −MA
Y (ν)(A−A0)ν

{HA
λ , H

A
λ }A = 0

where X and Y are defined as in Theorem 7.

The corresponding BFV structure resolving the quotient is given by the following theorem:
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Theorem 11. The BFV space of field FA is the bundle

FA −→ Ω1
en(Σ,VΣ)⊕AGYM

:: Σ

with local trivialisation on an open UYMΣ ⊂ Ω1
en(Σ,VΣ)⊕AGΣ ::::::::::::::::::::::::

UYMΣ ⊂ Ω1
en(Σ,VΣ)⊕AYM

Σ

FYM ' UYMΣ × Tgrav × Ω
(0,2)
Σ,red(g)× T ∗(Γ[1](Σ, g)), (29)

where Tgrav is the gravity fiber defined in (14) and we denote by µ ∈ Γ[1](g) and its antifield by

µ† ∈ Γ[−1](∧3T ∗Σ⊗ ∧4VΣ ⊗ g). Furthermore, B ∈ Ω
(0,2)
Σ,red(g) satisfies (24). If we define

SAghost =

∫
Σ

Tr

{
1

2
[µ, µ]µ† − LA0

ξ (µ)µ† +
1

2
ιξιξFA0

µ† +
[
Lω0

ξ (λen)(ν) − [c, λen](ν)
]

(A−A0)νµ
†
}

The corresponding action functional and a symplectic form on FA are

SA = S + pAξ + hAλ +MA
µ + SAghost (30)

ΩBFVA = ΩBFV +$A +$A
ghost (31)

where $A
ghost =

∫
Σ

Tr(δµδµ†). Then the triple (FA,ΩBFVA ,SA) defines a BFV structure on Σ.

3.4 Spinor

The precise setting in which we can couple gravity with a spinor field is described in [CCF22,
Section 5]. We recall here just the bulk action and the boundary structure. The action of the
spinor field coupled with gravity takes the form

Sspin = S + Sψ

where

Sψ =

∫
M

i
e3

2 · 3!

[
ψγdωψ − dωψγψ

]
, (32)

The geometric phase space is the bundle

F ∂ψ → Ω1
en(Σ,VΣ)× S(Σ)× S(Σ)

where S(Σ) := Γ(Σ, Eλ|Σ), 7 with fiber Ared(Σ) such that

en

(
dωe−

i

16
ψ
(
jγjγe

2γ + γjγjγe
2
)
ψ

)
= eσ̃ (33)

for some σ̃ ∈ Ω1(Σ,VΣ). The symplectic form on this space is given by Ωψ = $ +$ψ where

$ψ =

∫
Σ

i
e2

4

(
ψγδψ − δψγψ

)
δe+ i

e3

3!
δψγδψ. (34)

As in the previous examples the reduced phase space is recovered as the reduction with
respect to the functions

Lψc = Lc + lψc , Pψξ = Pξ + pψξ , Hψ
λ = Hλ + hψλ

7Eλ is defined to be the associated bundle to P̂ , Eλ := P̂ ×λW where W is an N -dimensional complex vector
space and λ : Spin(N − 1, 1)×W →W is a non-tensorial representation of the spin group on W .
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where

lψc =

∫
Σ

−i e3

2 · 3!

(
[c, ψ]γψ − ψγ[c, ψ]

)
, (35)

pψξ =

∫
Σ

−i e3

2 · 3!

(
ψγLω0

ξ (ψ)− Lω0

ξ (ψ)γψ
)

(36)

hψλ =

∫
Σ

λen

[
i
e2

4

(
ψγdωψ − dωψγψ

)]
, (37)

having defined [χ, ψ] := 1
4jγjγχψ for χ ∈ Ω•(Σ,∧2VΣ).8 The functions Lψc , Pψξ and Hψ

λ define a
coisotropic submanifold [CCF22] and their Poisson brackets are the same as in Theorem 7 (after
modifying the corresponding notation).

The BFV resolution of this quotient is given by the set of data specified in the following
theorem:

Theorem 12. Let Fψ be the bundle

Fψ −→ Ω1
en(Σ,VΣ)× S(Σ)× S(Σ)

with local trivialisation on an open UΣ

Fψ ' UΣ × Tgrav.

Further define

ΩBFVψ = ΩBFV +$ψ

Sψ = S + lψc + pψξ + hψλ

Then the triple (Fψ,ΩBFVψ ,Sψ) defines a BFV structure on Σ.

4 Interaction terms

Besides the coupling between gravity and the matter fields, in the standar model there are also
interactions between the matter field themselves. Since multiple instances of the same interaction
occur, it is useful to spell out the details of the interaction between possible couples of types of
fields, keeping the discussion as general as possible. Later on, in Section 5, we will combine all
the results contained in this section and specify the type of scalar, Yang–Mills and spinor fields
we are working on. The possible interactions are the following:

1. A Yang–Mills field and a spinor field;

2. A Yang–Mills field and a scalar field;

3. A scalar field and a spinor field.

We will treat these three interactions respectively in Sections 4.1, 4.2 and 4.3. For each of
the aforementioned interaction we describe the reduced phase space using the KT construction,
following the scheme already used for the single matter fields coupled to gravity. Namely, starting
from the classical action on the bulk, we derive the EL equations and the pre-symplectic form

8For any X ∈ V and for all α ∈ ∧kV , we define for α = 1
k!
αi1···ikvi1 ∧· · ·∧vik , jXα := ηab

(k−1)!
Xaαbi2···ikvi2 ∧

· · · ∧ vik .
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on the boundary fields. Then, if necessary we perform the reduction and find the geometric
phase space. Subsequently we find the functions describing the constraints and we check if they
form a coisotropic submanifold. Then the reduced phase space of the theory is found to be the
quotient of the geometric phase space with respect to the coisotropic submanifold defined by the
constraints.

In order to keep the construction simple, we will make use of the notation introduced in
Section 1.2. In particular all the relevant quantities will be presented as sums (or products) of
the quantities introduced above plus an interaction or correction term.

4.1 Yang–Mills-Spinor

We consider in this section the interaction of a Yang–Mills field and a spinor field together with
gravity. We denote the spinor field by ψ ∈ S(M) ⊗ su(N) and the Yang–Mills field by A. The
action on the bulk is given by the sum of the gravity part, the Yang–Mills part (23), the spinor
part (32) and an interaction part:

SYMS = S + Sψ + SA + SA,ψ

where

SA,ψ =

∫
M

eN−1

2(N − 1)!

(
ψγ[A,ψ]− [A,ψ]γψ

)
.

where ψγ[A,ψ] = igiψIγA
I
Jψ

J and gi is a coupling constant. The interaction term does not
contain derivatives, hence the boundary structure is just the direct sum of the YM structure and
Spinor structures. In particular the geometric phase space is given by

F ∂YMS → Ω1
en(Σ,VΣ)⊕AGYM

:: Σ × S(Σ)× S(Σ)

with fiber Ared(Σ)⊕Ω
(0,2)
Σ,red(g) such that (24) and (33) are satisfied. The symplectic form on this

space reads

ΩYMS = $ +$A +$ψ.

On this geometric phase space we can then define the following constraints:

LA,ψc = Lc + lψc ;

PA,ψξ = Pξ + pAξ + pψξ + pA,ψξ ;

HA,ψ
λ = Hλ + hAλ + hψλ + hA,ψλ ;

MA,ψ
µ = MA

µ +mA,ψ
µ

where

pA,ψξ =

∫
Σ

−i e3

2 · 3!

(
ψγ[ιξA0, ψ]− [ιξA0, ψ]γψ

)
(38)

hA,ψλ =

∫
Σ

−λen
[
i
e2

4

(
ψγ[A,ψ]− [A,ψ]γψ

)]
, (39)

mA,ψ
µ =

∫
Σ

−i e3

2 · 3!

(
[µ, ψ]γψ − ψγ[µ, ψ]

)
. (40)
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Remark 13. Note that for every field µ with values in g the following identities hold:

[µ, ψγψ] = 0

[µ, ψ]γψ − ψγ[µ, ψ] = 2[µ, ψ]γψ

The following theorem proves that these constraints form a coisotropic submanifold.

Theorem 14. Assume that g∂ is non-degenerate on Σ. Then, the zero locus of the functions

LA,ψc , PA,ψξ , HA,ψ
λ and MA,ψ

µ is a coisotropic submanifold with respect to the symplectic structure
ΩYMS. Their mutual Poisson brackets read

{MA,ψ
µ ,MA,ψ

µ }YMS = −
1

2
MA,ψ

[µ,µ]
{MA,ψ

µ , LA,ψc }YMS = 0

{MA,ψ
µ , PA,ψξ }YMS = MA,ψ

L
A0
ξ
µ

{MA,ψ
µ , HA,ψ

λ }YMS = 0

{PA,ψξ , PA,ψξ }YMS =
1

2
PA,ψ

[ξ,ξ]
−

1

2
LA,ψιξιξFω0

−
1

2
MA,ψ
ιξιξFA0

{LA,ψc , PA,ψξ }YMS = LA,ψ
L
ω0
ξ
c

{LA,ψc , HA,ψ
λ }YMS = −PA,ψ

X(ν) + LA,ψ
X(ν)(ω−ω0)ν

−HA,ψ

X(n) +MA,ψ

X(ν)(A−A0)ν
{LA,ψc , LA,ψc }YMS = −

1

2
LA,ψ

[c,c]

{PA,ψξ , HA,ψ
λ }YMS = PA,ψ

Y (ν) − L
A,ψ

Y (ν)(ω−ω0)ν
+HA,ψ

Y (n) −M
A,ψ

Y (ν)(A−A0)ν
{HA,ψ

λ , HA,ψ
λ }YMS = 0

with the same notation as in Theorem 7.

Proof. We prove each bracket by using Theorem 2. The first step is to compute the Hamiltonian
vector fields of the constraints. Using the notation and the results of Section 2, the expressions
of L, lA, lψ,PpA,pψ,H,hA,hψ and MA have been computed in [CCF22] and are collected in
Appendix B. Hence the only components that we have to compute through (2) are lA,ψ, pA,ψ,
hA,ψ and mA,ψ. Let us start from lA,ψ. It must satisfy

ιlA,ψ ($ +$A +$ψ) + ιlψ$A + ιlA$ψ = 0.

Since ιlψ$A = ιlA$ψ = 0 we conclude lA,ψ = 0. Similarly we have

ιpA,ψ ($ +$A +$ψ) + ιpψ$A + ιpA$ψ = δpA,ψξ .

Since ιpψ$A = ιpA$ψ = 0, the computation is exactly the same as for pψξ with A0 instead of ω0.
Hence we get

pA,ψe = 0 pA,ψω = VpA,ψ

pA,ψA = 0 pA,ψρ = 0

pA,ψψ = −[ιξA0, ψ] pA,ψ
ψ

= −[ιξA0, ψ].

For hA,ψ we need some more work. We have ιhψ$A = ιhA$ψ = 0 and

δhA,ψλ =

∫
Σ

−λenieδe
(
ψγ[A,ψ]

)
− λen

[
i
e2

2

(
δψγ[A,ψ] + ψγ[δA, ψ]− ψγ[A, δψ]

)]
.

Hence we get:

hA,ψe = 0 hA,ψω = − i
2
λenψγ[A,ψ] + VhA,ψ

hA,ψA = 0 (hA,ψρ )JI = −1

2
giλene

2ψIγψ
J

e3

3!
γhA,ψψ =

λene
2

2
γ[A,ψ]

e3

3!
hA,ψ
ψ

γ =
λene

2

2
[A,ψ]γ.
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As for pA,ψξ , the Hamiltonian vector field of mA,ψ
µ can be obtained by noticing that it is equal to

that of lψc by substituting c with µ. The result is

mA,ψe = 0 mA,ψω = VmA,ψ

mA,ψA = 0 mA,ψρ = 0

mA,ψψ = [µ, ψ] mA,ψ
ψ

= [µ, ψ].

We can now compute the constraints using Theorem 2. Before beginning the actual computation
we note that for all constraints

ιX+xψ ιY+yψ$A + ιX+xAιY+yA$ψ = 0,

ιXιY$A = 0,

ιXιY$ψ = 0.

Furthermore it is also possible to note that

ιxψ ιyAΩYMS = 0

ιxAιyψΩYMS = 0

for all brackets except {HA,ψ
λ , HA,ψ

λ }

ιhψ ιhAΩYMS = ιhψ ιhA$ =

∫
Σ

ehψe hAω = 0

since hψe ∼ λ, hψω ∼ λ and λ2 = 0. Hence we conclude that we have

{XA,ψ, Y A,ψ}YMS = {X + xA, Y + yA}A + {X + xψ, Y + yψ}ψ − {X,Y }
+ ιyA,ψδ(X + xA + xψ + xA,ψ) + ιxA,ψδ(Y + yA + yψ + yA,ψ)

− ιxA,ψ ιyA,ψΩYMS .

Using this formula we can compute the brackets, omitting the terms that are zero.

{MA,ψ
µ ,MA,ψ

µ }YMS = {MA
µ ,M

A
µ }A + 2ιmA,ψδ(M

A
µ +mA,ψ

µ )− ιmA,ψ ιmA,ψΩYMS

=
1

2
MA

[µ,µ] + 2

∫
Σ

i
e3

2 · 3!

(
[µ, [µ, ψ]]γψ − ψγ[µ, [µ, ψ]] + [µ, ψ]γ[µ, ψ]

)
+ 2

∫
Σ

i
e3

2 · 3!
[µ, ψ]γ[µ, ψ]− 2

∫
Σ

i
e3

3!
[µ, ψ]γ[µ, ψ]

=
1

2
MA

[µ,µ] +
1

2
mA,ψ

[µ,µ] =
1

2
MA,ψ

[µ,µ].

Since lA,ψ = 0 we get

{MA,ψ
µ , LA,ψc }YMS = {MA

µ , Lc}A + ιmA,ψδ(Lc + lψc )

=

∫
Σ

−i e3

2 · 3!

(
−[c, [µ, ψ]]γψ − [c, ψ]γ[µ, ψ]− [µ, ψ]γ[c, ψ] + ψγ[c, [µ, ψ]]

)
= 0.
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where we used that [c, [µ, ψ]] = [µ, [c, ψ]] and the properties in Remark 13.

{MA,ψ
µ , PA,ψξ }YMS = {MA

µ , Pξ + pAξ }A + ιpA,ψδ(M
A
µ +mA,ψ

µ ) + ιmA,ψδ(Pξ + pAξ + pψξ + pA,ψξ )

− ιmA,ψ ιpA,ψΩYMS

= MA

L
A0
ξ µ
−
∫

Σ

i
e3

3!

(
[µ, ψ]γ[ιξA0, ψ] + [ιξA0, ψ]γ[µ, ψ]

)
−
∫

Σ

i
e3

2 · 3!

(
[µ, ψ]γLω0+A0

ξ (ψ)− ψγLω0+A0

ξ ([µ, ψ]) + Lω0+A0

ξ ([µ, ψ])γψ
)

+

∫
Σ

i
e3

2 · 3!

(
Lω0+A0

ξ (ψ)γ[µ, ψ] + 2
(
[µ, ψ]γ[ιξA0, ψ] + [ιξA0, ψ]γ[µ, ψ]

))
= MA

L
A0
ξ µ
−
∫

Σ

i
e3

2 · 3!

(
−ψγ[Lω0+A0

ξ µ, ψ] + [Lω0+A0

ξ µ, ψ]γψ
)

= MA

L
A0
ξ µ
−
∫

Σ

i
e3

2 · 3!

(
−ψγ[LA0

ξ µ, ψ] + [LA0

ξ µ, ψ]γψ
)

= MA

L
A0
ξ µ

+mA,ψ

L
A0
ξ µ

= MA,ψ

L
A0
ξ µ

.

where we used Lω0+A0

ξ µ = LA0

ξ µ and [µ, ψ]γLω0+A0

ξ (ψ) = −ψγ[µ,Lω0+A0

ξ (ψ)]. Similarly we get

{MA,ψ
µ , HA,ψ

λ }YMS = {MA
µ , H

A
λ }A + ιhA,ψδ(M

A
µ +mA,ψ

µ ) + ιmA,ψδ(Hλ + hAλ + hψλ + hA,ψλ )

− ιmA,ψ ιhA,ψΩYMS

= −
∫

Σ

iλene
2

2
ψγ[dAµ, ψ] +

∫
Σ

iλene
2

2

(
[µ, ψ]γ[A,ψ]− [A,ψ]γ[µ, ψ]

)
+

∫
Σ

iλene
2

4

(
[µ, ψ]γdωψ − ψγdω([µ, ψ]) + dω([µ, ψ])γψ + dω(ψ)γ[µ, ψ]

)
+

∫
Σ

iλene
2

4

(
[µ, ψ]γ[A,ψ]− ψγ[A, [µ, ψ]] + [A, [µ, ψ]]γψ + [A,ψ]γ[µ, ψ]

)
−
∫

Σ

iλene
2

2

(
[µ, ψ]γ[A,ψ]− [A,ψ]γ[µ, ψ]

)
= −

∫
Σ

iλene
2

2
ψγ[dAµ, ψ] +

∫
Σ

iλene
2

4

(
[µ, ψ]γdω+Aψ − ψγdω+A([µ, ψ])

)
+

∫
Σ

iλene
2

4

(
dω+A([µ, ψ])γψ + dω+A(ψ)γ[µ, ψ]

)
= −

∫
Σ

iλene
2

2
ψγ[dAµ, ψ] +

∫
Σ

iλene
2

2
ψγ[dA+ωµ, ψ] = 0

where we used dA+ωµ = dAµ. Using again that lA,ψ = 0 we get

{LA,ψc , LA,ψc }YMS = {Lc, Lc}A + {Lc + lψc , Lc + lψc }ψ − {Lc, Lc}

=
1

2
(L[c,c] + lψ[c,c]) =

1

2
LA,ψ[c,c].
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Similarly,

{LA,ψc , PA,ψξ }YMS = {Lc, Pξ + pAξ }A + {Lc + lψc , Pξ + pψξ }ψ − {Lc, Pξ}+ ιpA,ψδ(Lc + lψc )

= LA
L
ω0
ξ c

+ Lψ
L
ω0
ξ c
− LL

ω0
ξ c +

∫
Σ

i
e3

2 · 3!

(
[c, [ιξA0, ψ]]γψ + [c, ψ]γ[ιξA0, ψ]

)
+

∫
Σ

i
e3

2 · 3!

(
−[ιξA0, ψ]γ[c, ψ]− ψγ[c, [ιξA0, ψ]]

)
= LA,ψ

L
ω0
ξ c

+

∫
Σ

i
e3

2 · 3!

(
−[ιξA0, [c, ψ]]γψ + [c, ψ]γ[ιξA0, ψ]

)
+

∫
Σ

i
e3

2 · 3!

(
−[ιξA0, ψ]γ[c, ψ] + ψγ[ιξA0, [c, ψ]]

)
= LA,ψ

L
ω0
ξ c

where we used [c, [ιξA0, ψ]] = −[ιξA0, [c, ψ]] and [ιξA0, [c, ψ]]γψ = [c, ψ]γ[ιξA0, ψ].

{LA,ψc , HA,ψ
λ }YMS = {Lc, Hλ + hAλ }A + {Lc + lψc , Hλ + hψλ}ψ − {Lc, Hλ}+ ιhA,ψδ(Lc + lψc )

= −PAX(ν) + LX(ν)(ω−ω0)ν −H
A
X(n) +MA

X(ν)(A−A0)ν
− Pψ

X(ν) + Lψ
X(ν)(ω−ω0)ν

−Hψ
X(n) − PX(ν) + LX(ν)(ω−ω0)ν −HX(n) −

∫
Σ

i

2
[λenψγ[A,ψ], e2]

−
∫

Σ

i

4

(
−[c, λene

2[A,ψ]]γψ + [c, ψ]γλene
2[A,ψ]

)
+

∫
Σ

i

4

(
−λene2[A,ψ]γ[c, ψ] + ψγ[c, λene

2[A,ψ]]
)

= −PAX(ν) + LX(ν)(ω−ω0)ν −H
A
X(n) +MA

X(ν)(A−A0)ν
− Pψ

X(ν) + Lψ
X(ν)(ω−ω0)ν

−Hψ
X(n) − PX(ν) + LX(ν)(ω−ω0)ν −HX(n)

−
∫

Σ

[c, λen]

[
i
e2

4

(
ψγ[A,ψ]− [A,ψ]γψ

)]
= −PAX(ν) + LX(ν)(ω−ω0)ν −H

A
X(n) +MA

X(ν)(A−A0)ν
− Pψ

X(ν) + Lψ
X(ν)(ω−ω0)ν

−Hψ
X(n) − PX(ν) + LX(ν)(ω−ω0)ν −HX(n) − pA,ψ

X(ν) − hA,ψX(n) +mA,ψ
X(ν)(A−A0)ν

= −PA,ψ
X(ν) + LA,ψ

X(ν)(ω−ω0)ν
−HA,ψ

X(n) +MA,ψ
X(ν)(A−A0)ν

where in the second-last passage we used that [c, λen] = X = X(ν)eν +X(n)en and that

−pA,ψ
X(ν) +mA,ψ

X(ν)(A−A0)ν
= −

∫
Σ

[c, λen](ν)eν

[
i
e2

4

(
ψγ[A,ψ]− [A,ψ]γψ

)]
Let us now consider

{PA,ψξ , PA,ψξ }YMS = {Pξ + pAξ , Pξ + pAξ }A + {Pξ + pψξ , Pξ + pψξ }ψ − {Pξ, Pξ}

+ 2ιpA,ψδ(Pξ + pAξ + pψξ + pA,ψξ )− ιpA,ψ ιpA,ψΩYMS .
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We have

{Pξ + pAξ , Pξ + pAξ }A + {Pξ + pψξ , Pξ + pψξ }ψ − {Pξ, Pξ}

=
1

2

(
PA[ξ,ξ] − LιξιξFω0

−MA
ιξιξFA0

+ Pψ[ξ,ξ] − L
ψ
ιξιξFω0

− P[ξ,ξ] + LιξιξFω0

)
and

2ιpA,ψδ(Pξ + pAξ + pψξ + pA,ψξ )− ιpA,ψ ιpA,ψΩYMS

= −
∫

Σ

i
e3

2 · 3!

(
[ιξA0, ψ]γLω0+A0

ξ (ψ) + ψγLω0+A0

ξ ([ιξA0, ψ])
)

−
∫

Σ

i
e3

2 · 3!

(
−Lω0+A0

ξ (ψ)γ[ιξA0, ψ]− Lω0+A0

ξ ([ιξA0, ψ])γψ
)

= −
∫

Σ

i
e3

2 · 3!

(
−ψγ[ιξA0,L

ω0+A0

ξ (ψ)] + ψγLω0+A0

ξ ([ιξA0, ψ])
)

−
∫

Σ

i
e3

2 · 3!

(
−[ιξA0,L

ω0+A0

ξ (ψ)]γψ − Lω0+A0

ξ ([ιξA0, ψ])γψ
)

=

∫
Σ

−i e3

2 · 3!

(
−ψγ[Lω0+A0

ξ (ιξA0), ψ]− [Lω0+A0

ξ (ιξA0), ψ]γψ
)

=

∫
Σ

i
e3

4 · 3!

(
ψγ
[
ι[ξ,ξ]A0 + ιξιξFA0

, ψ
]

+
[
ι[ξ,ξ]A0 + ιξιξFA0

, ψ
]
γψ
)

=
1

2
pA,ψ[ξ,ξ] −m

A,ψ
ιξιξFA0

where we used that Lω0+A0

ξ ιξA0 = LA0

ξ ιξA0 = 1
2 ι[ξ,ξ]A0 + 1

2 ιξιξFA0 . Hence we get

{PA,ψξ , PA,ψξ }YMS =
1

2

(
PA,ψ[ξ,ξ] − L

A,ψ
ιξιξFω0

−MA,ψ
ιξιξFA0

)
.

{PA,ψξ , HA,ψ
λ }YMS = {Pξ + pAξ , Hλ + hAλ }A + {Pξ + pψξ , Hλ + hψλ}ψ − {Pξ, Hλ}

+ ιhA,ψδ(Pξ + pAξ + pψξ + pA,ψξ ) + ιpA,ψδ(Hλ + hAλ + hψλ + hA,ψλ )

− ιpA,ψ ιhA,ψΩYMS

= PAY (ν) − LY (ν)(ω−ω0)ν +HA
Y (n) −MA

Y (ν)(A−A0)ν
+ pψ

Y (ν) − lψY (ν)(ω−ω0)ν

+ hψ
Y (n) −

∫
Σ

iλenLω0

ξ e
2

4

(
ψγ[A,ψ]− [A,ψ])γψ

)
− iλene

2

2

(
ψγ[ιξFω0 + LA0

ξ (A−A0), ψ]− [ιξFω0 + LA0

ξ (A−A0), ψ]γψ
)

−
∫

Σ

iλene
2

2

(
[A,ψ]γLω0+A0

ξ ψ − Lω0+A0

ξ ψγ[A,ψ]
)

−
∫

Σ

iλene
2

4

(
[ιξA0, ψ]γdω+Aψ − ψγdω+A[ιξA0, ψ] + dω+A[ιξA0, ψ]γψ

)
−
∫

Σ

iλene
2

4

(
dω+Aψγ[ιξA0, ψ] + 2[A,ψ]γ[ιξA0, ψ] + 2[ιξA0, ψ]γ[A,ψ]

)
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Hence we get

{PA,ψξ , HA,ψ
λ }YMS = PAY (ν) − LY (ν)(ω−ω0)ν +HA

Y (n) −MA
Y (ν)(A−A0)ν

+ pψ
Y (ν) − lψY (ν)(ω−ω0)ν

+ hψ
Y (n) −

∫
Σ

iLω0

ξ (λen)e2

4

(
ψγ[A,ψ]− [A,ψ])γψ

)
= PAY (ν) − LY (ν)(ω−ω0)ν +HA

Y (n) −MA
Y (ν)(A−A0)ν

+ pψ
Y (ν) − lψY (ν)(ω−ω0)ν

+ hψ
Y (n) + pA,ψ

Y (ν) + hA,ψ
Y (n) −mA,ψ

Y (ν)(A−A0)ν

= PA,ψ
Y (ν) − LA,ψY (ν)(ω−ω0)ν

+HA,ψ
Y (n) −MA,ψ

Y (ν)(A−A0)ν

{HA,ψ
λ , HA,ψ

λ }YMS = {Hλ + hAλ , Hλ + hAλ }A + {Hλ + hψλ , Hλ + hψλ}ψ − {Hλ, Hλ}

+ ιhA,ψδ(Hλ + hAλ + hψλ + hA,ψλ ) + ιhA,ψδ(Hλ + hAλ + hψλ + hA,ψλ )

− ιhA,ψ ιhA,ψΩYMS = 0

because all the components of the Hamiltonian vector field of HA,ψ
λ are proportional to λ and

λ2 = 0.

4.2 Yang–Mills-Higgs

We consider the case of an interacting scalar field and a Yang–Mills field both coupled to gravity,
with the addition of a Higgs-type potential.

First of all, let PSU(n) be a a SU(n)-principal bundle over M , with the fundamental repre-
sentation n : SU(n)→ End(Cn) and its conjugate one n̄ with respect to the canonical hermitian
structure on Cn.

We define the Higgs field φ (a scalar multiplet) to be a section of the associated bundle
En := PSU(n) ×n Cn, while φ† is a section of En̄ := PSU(n) ×n̄ Cn. Working in the first order

formalism, we also introduce the associated momentum Π ∈ Γ(M,V ⊗En) =: Ω(0,1)(En) and its
conjugate Π† ∈ Ω(0,1)(En̄).

Remark 15. In the remainder of this section, we will identify (sections of) the Lie algebra su(n)
with (sections of) the algebra of hermitian traceless matrices over Cn, i.e.

Γ(M, su(n)) ' Γ(M, (En ⊗ En̄)t,h) =: Γ(M, (En ⊗ En̄)′).

Furthermore, we will consider φ and Π to be such that the total degrees are |φ| = 0 and |Π| = 1.

Remark 16. The canonical hermitian product on Cn induces a hermitian product on En (and
hence on Γ(En)). We symmetrize it (i.e. add its complex conjugate) to account for the reality
requirement

< ·, · > : En × En −→ C

( φ , ϕ ) 7−→ < φ,ϕ >:=
1

2
(φ†ϕ+ (−1)|φ||ϕ|ϕ†φ).

Furthermore, we denote the full interior product on En ⊗ V by

(< ·, · >) : (En ⊗ V)2 −→ C

(Π, ε) 7−→ (< Π, ε >) :=
1

2
ηab(Π

†a
i ε

b,i + c.c).
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The last ingredient we need to write the YMH action is the covariant derivative. Letting
α ∈ Γ(M, (En⊗En̄)′), we set dαφ := dφ+ [A, φ] and dαφ

† := dφ†+ [α, φ†], whilst in coordinates
we have9

[α, φ]i := igH(αφ)i = igαijφ
j ;

[α, φ†]i = −(−1)|α|(|φ|+1)igHφ
†
jα

j
i ,

where gH is a coupling constant related to the representation of SU(n).
With those definitions having been established, denoting the YM field and its conjugate

momentum by A and B as before, the desired action in dimension N is given by SYMH =
S + SA + SH where SA is defined in (23) and

SH =

∫
M

e3

3!
< Π, dAφ > +

e4

2 · 4!
(< Π,Π >)− q

4 · 4!
e4(< φ, φ > −v2)2,

where q is another coupling constant and v represent the Higgs vacuum.

Remark 17. Notice that the first terms of SH are formally equivalent to Sφ, after substituting
dφ→ dAφ and generalizing φ to a SU(n) multiplet. Then one can easily show that in this case
the structural constraint reads

(e,Π) + dAφ = 0. (41)

(The structural constraint for the B field remains unaltered.) As a consequence the interaction
between the YM field and the Higgs field is contained in SH .

We obtain the geometric phase space as the bundle

F ∂YMH → Ω1
en(Σ,VΣ)⊕ASU(n)

Σ ⊕ Γ(Σ, En|Σ)× Γ(Σ, En̄|Σ),

with fiber
Ared(Σ)⊕ Ω

(0,2)
Σ,red(g)⊕ Ω0,1

∂ (En|Σ)× Ω0,1
∂ (En̄|Σ).

where ω,B,Π,Π† satisfy (8), (24) and (41). F ∂YMH is symplectic with symplectic form

ΩYMH = $ +$A +$H

where

$H =

∫
Σ

< δp, δφ > (42)

having defined p := e3

3! Π to get rid of the unphysical components of Π, as we did in the case of
the free scalar field.

Before moving on to the constraint analysis, we provide some useful identities. Let φ, ϕ ∈
Γ(En), α ∈ Γ(su(n)), then:

< αϕ, φ > = (−1)|α||ϕ| < ϕ,αφ > (43)

< ϕ, [α, φ] > =
igH
2

Tr[(−1)|α||ϕ|ϕφ† − (−1)|φ|(|α|+|ϕ|)φϕ†)α] (44)

[LA0

ξ , dA]φ = LA0

ξ dAφ+ dAL
A0

ξ φ = [ιξFA0 + LA0

ξ (A−A0), φ] (45)

Let us now consider the constraints. The coupling of the scalar field to the YM field produces
the expected constraints (i.e. free gravity + free YM + free scalar) plus the expected interaction

9the action of su(n) on φ† is defined by requiring that [α,< φ, φ >] = 0, since < φ, φ > is assumed to be a
SU(n) scalar.
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terms (the one arising from the minimal coupling via the covariant derivative dA). Indeed we
have

mH,A
µ =

∫
Σ

i

2
gHTr[µ(φp† − pφ†)] =

∫
Σ

< p, [µ, φ] >; (46)

pHξ =

∫
Σ

− < p,Lω0

ξ φ >; (47)

pH,Aξ =

∫
Σ

− < p, ιξ[A0, φ] > (48)

hHλ =

∫
Σ

λen
[e2

2
< Π, dφ > +

e3

2 · 3!
(< Π,Π >)− qH

2 · 3!
e3(< φ, φ > −v2)2

]
; (49)

hH,Aλ =

∫
Σ

λen
e2

2
< Π, [A, φ] > . (50)

Remark 18. Notice that hHλ = hφλ + hVHλ , where hVHλ is the term containing the Higgs potential
term VH := 1

2qH(< φ, φ > −v2)2

hVHλ = −
∫

Σ

λen
qH
24
e3(< φ, φ > −v2)2 =

∫
Σ

λen
e3

3!
VH

Obtaining

LH,Ac = Lc; PH,Aξ = Pξ + pAξ + pHξ + pH,Aξ ;

MH,A
µ = MA

µ +mH,A
µ ; HH,A

λ = Hλ + hAλ + hHλ + hH,Aλ

Theorem 19. Assume that g∂ is non-degenerate on Σ. Then, the zero locus of the functions

LH,Ac , PH,Aξ , HH,A
λ and MH,A

µ defined above is a coisotropic submanifold with respect to the
symplectic structure ΩYMH . Their mutual Poisson brackets read

{LH,Ac , LH,Ac }YMH = −
1

2
LH,A

[c,c]
{LH,Ac , PH,Aξ }YMH = LH,A

L
ω0
ξ
c

{LH,Ac ,MH,A
µ }YMH = 0 {LH,Ac , HH,A

λ }YMH = −PH,A
X(ν) + LH,A

X(ν)(ω−ω0)ν
−HH,A

X(n) +MH,A
Xν(A−A0)ν

{MH,A
µ , PH,Aξ }YMH = MH,A

L
ω0
ξ
µ

{PH,Aξ , HH,A
λ }YMH = PH,A

Y (ν) − L
H,A

Y (ν)(ω−ω0)ν
+HH,A

Y (n) −M
H,A
Y ν(A−A0)ν

{MH,A
µ , HH,A

λ }YMH = 0 {PH,Aξ , PH,Aξ }YMH =
1

2
PH,A

[ξ,ξ]
−

1

2
LH,AιξιξFω0

−
1

2
MH,A
ιξιξFω0

{MH,A
µ ,MH,A

µ }YMH = −
1

2
MH,A

[µ,µ]
{HH,A

λ , HH,A
λ }YMH = 0

with the same notation as in Theorem 7.

Proof. We use the results of appendix B for the components of the Hamiltonian vector fields
of the non-interacting theories. In particular, we have xH = xφ. The residual components are
computed using the results in Section 2. We start with MH,A

µ . One can quite easily see that

mH,Aφ = [µ, φ], mH,Ap = [µ, p].

Now, since lH,Ac = 0 and ιlφ$A = ιlA$H = 0, one finds

lH,A = 0.
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For PH,Aξ we find

δpA,Hξ =

∫
Σ

− < δp, ιξ[Ao, φ] > + < [A0, ιξp], δφ >= ιpφ$A︸ ︷︷ ︸
0

+ ιpA$H︸ ︷︷ ︸
0

+ιpH,AΩYMH ,

finding
pH,Aφ = −ιξ[A0, φ], pH,Ap = [A0, ιξp];

while all the other components of pH,A vanish.
Regarding HH,A

λ , we find that hH = hφ as expected, except for the components that inherit
the Higgs potential term:

hHp = dω

(
λen
2
e2Π

)
+

λen
2 · 3!

qhe
3(< φ, φ > −v2)φ;

ehHω = λen

(
e < Π, dφ > +

e2

4
< (Π,Π) > +

e2

2
VH

)
− λ

2
e2Π(Π, en) + VhH .

For hH,Aλ we obtain

δhH,Aλ =

∫
Σ

λen

[
e < Π, [A, φ] > δe+

e2

2
(< δΠ, [A, φ] > + < [A,Π], δφ >)

]
+

∫
Σ

λen
igHe

2

4
Tr[(Πφ† − φΠ†)δA]

= ιhφ$A︸ ︷︷ ︸
0

+ ιhA$H︸ ︷︷ ︸
0

+ιhH,AΩYMH ,

hence finding

hA,He = 0 ehA,Hω = −λen
2
e < Π, [A, φ] >

e3

3!
hA,Hφ =

λen
2
e2[A.φ]

e3

3!
hA,HΠ =

λen
2
e2[A,Π]

hA,HA = 0 hA,Hρ =
igH
4
λene

2Tr(Πφ† − φΠ†)

For the computations we use Theorem 2 and the results of Theorem 7 and of corresponding
results in presence of a scalar Higgs field and and a Yang–Mills field.

As before we note that for all constraints

ιX+xH ιY+yH$A + ιX+xAιY+yA$H = 0,

ιXιY$A = 0,

ιXιY$H = 0,

ιxH ιyAΩYMH = 0,

ιxAιyHΩYMH = 0.

Hence we can use the simplified formula

{XH,A, Y H,A}YMH = {X + xA, Y + yA}A + {X + xH , Y + yH}H − {X,Y }
+ ιyH,Aδ(X + xA + xH + xH,A) + ιxH,Aδ(Y + yA + yH + yH,A)

− ιxH,AιyH,AΩYMH .
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Applying it we get:

{MA,H
µ ,MA,H

µ }YMH = {MA
µ ,M

A
µ }A + 2ιmH,Aδ(M

A
µ +mH,A

µ )− ιmH,AιmH,AΩYMH

=
1

2
MA

[µ,µ] +

∫
Σ

< [µ, p], [µ, φ] > + < p, [µ, [µ, φ]] > −
∫

Σ

< [µ, p], [µ, φ] >

=
1

2
MA

[µ,µ] +
1

2

∫
Σ

< p, [[µ, µ], φ] >

=
1

2
MH,A

[µ,µ];

{LA,Hc ,MA,H
µ }YMH = {MA

µ , Lc}A + ιmH,AδLc = 0

{MH,A
µ , PH,Aξ }YMH = {MA

µ , Pξ + pAξ }A + ιpH,Aδ(M
A
µ +mH,A

µ )

− ιmH,AιpH,AΩYMH + ιMAιP+pA$H + ιMAιpHΩYMH

=

∫
Σ

(< [A0, ιξp], [µ, φ] > + < p, [µ, [ιξA0, φ]] >)

+MA
LA0µ +

∫
Σ

(
− < [µ, p],Lω0+A0

ξ φ > − < p,Lω0+A0

ξ [µ, φ] >
)

−
∫

Σ

(< [µ, p], [ιξA0, φ] > + < [A0, ιξp], [µ, φ] >)

= MA

L
A0
ξ µ
−
∫

Σ

< p, [LA0

ξ µ, φ] >= MH,A

L
A0
ξ µ

,

where we noticed that in the second step the first and third line cancel and used that

− < [µ, p],Lω0+A0

ξ φ >=< p, [µ,Lω0+A0

ξ φ] > .

{MH,A
µ , HH,A

λ }YMH = {MA
µ , H

A
λ }A + ιhH,Aδ(M

A
µ +mH,A

µ ) + ιmH,Aδ(Hλ + hAλ + hHλ + hH,Aλ )

− ιmH,AιhH,AΩYMH

=

∫
Σ

λene
2

2
(< Π, [dAµ, φ] > + < [A,Π], [µ, φ] > + < Π, [µ, [A, φ]] >)

−
∫

Σ

λene
2

2
(< [µ,Π], dφ > + < Π, d[µ, φ] >) +

λene
3

3
< [µ,Π],Π >

+

∫
Σ

λene
3qH

3
(< φ, φ > −v2) < [µ, φ], φ >

+

∫
Σ

λene
2

2
(< [µ,Π], [A, φ] > + < Π, [A, [µ, φ]] >)

−
∫

Σ

λene
2

2
(< [µ,Π], [A, φ] > + < [A,Π], [µ, φ] >) = 0,

having used the fact that [µ,< φ, φ >] = [µ,< Π,Π >] = 0 and the Jacobi identity for A,µ and
φ.

{LA,Hc , LA,Hc }YMH = {LHc , LHc }H + {LAc , LAc }A − {Lc, Lc}

= −1

2
L[c,c] = −1

2
LA,H[c,c] ;
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{LA,Hc , PH,Aξ }YMH = {Lc, Pξ + pHξ }H + {Lc, Pξ + pAξ }A − {Lc, Pξ}+ ιpH,AδLc = LH,ALω0c

We have

ιhH,AδLc =

∫
Σ

c

[
λen
4

< Π, [A, φ] >, e2

]
=

∫
Σ

[c, λen]
e2

4
< Π, [A, φ] > .

Hence, using [c, λen] = X = X(ν)eν +X(n)en and

−pH,A
X(ν) +mH,A

X(ν)(A−A0)ν
=

∫
Σ

[c, λen]
(ν)
eν
e2

4
< Π, [A, φ] >

we get

{LA,Hc , HH,A
λ }YMH = {Lc, Hλ + hAλ }A + {Lc, Hλ + hHλ }H − {Lc, Hλ}+ ιhH,AδLc

= −PAX(ν) + LAX(ν)(ω−ω0)ν
−HA

X(n) +MA
Xν(A−A0)ν

− PHX(ν) + LHX(ν)(ω−ω0)ν

−HH
X(n) + PX(ν) − LX(ν)(ω−ω0)ν +HX(n) − pH,A

X(ν) − hH,AX(n) +mH,A
X(ν)(A−A0)ν

= −PH,A
X(ν) + LH,A

X(ν)(ω−ω0)ν
−HH,A

X(n) +MH,A
Xν(A−A0)ν

To compute the following bracket, we make use of the following identity

1

2
ι[ξ,ξ]A0 = ιξdιξA0 −

1

2
ιξιξdA0.

{PH,Aξ , PH,Aξ }YMH = {Pξ + pAξ , Pξ + pAξ }A + {Pξ + pHξ , Pξ + pHξ }H − {Pξ, Pξ}

+ 2ιpH,Aδ(Pξ + pAξ + pHξ + pH,Aξ )− ιpH,AιpH,AΩYMS

=
1

2
PA[ξ,ξ] −

1

2
LAιξιξFω0

− 1

2
MA
ιξιξFA0

+
1

2
Pψ[ξ,ξ] −

1

2
LψιξιξFω0

− 1

2
P[ξ,ξ]

+
1

2
LιξιξFω0

+

∫
Σ

< [A0, ιξp],L
ω0+A0

ξ φ > + < p,Lω0+A0

ξ [ιξA0, φ] >

−
∫

Σ

< [A0, ιξp], [ιξA0, φ] >

=
1

2
PA[ξ,ξ] −

1

2
LAιξιξFω0

− 1

2
MA
ιξιξFA0

+
1

2
Pψ[ξ,ξ] −

1

2
LψιξιξFω0

− 1

2
P[ξ,ξ]

+
1

2
LιξιξFω0

+

∫
Σ

< p, [ι[ξ,ξ]A0, φ] >

=
1

2
PH,A[ξ,ξ] −

1

2
LH,AιξιξFω0

− 1

2
MH,A
ιξιξFA0

;
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{PH,Aξ , HH,A
λ }YMH = {Pξ + pAξ , Hλ + hAλ }A + {Pξ + pHξ , Hλ + hHλ }H − {Pξ, Hλ}

+ ιhH,Aδ(Pξ + pAξ + pHξ + pH,Aξ ) + ιpH,Aδ(Hλ + hAλ + hHλ + hH,Aλ )

− ιpH,AιhH,AΩYMH

= PAY (ν) − LAY (ν)(ω−ω0)ν
+HA

Y (n) −MA
Y ν(A−A0)ν

+ PHY (ν) − LHY (ν)(ω−ω0)ν

+HH
Y (n) − PY (ν) + LY (ν)(ω−ω0)ν −HY (n) +

∫
Σ

Lω0+A0

ξ e
λene

2
< Π, [A, φ] >

+

∫
Σ

λene
2

2
< [A,Π],Lω0+A0

ξ φ > −λene
2

2
< Π,Lω0+A0

ξ [A, φ] >

+

∫
Σ

< Π,Lω0+A0

ξ

(
λene

2

2
[A, φ]

)
> +

λene
2

2
< [ιξA0,Π], dAφ >

+

∫
Σ

λene
2

2
(< Π, dA[ιξA0, φ] >)

+

∫
Σ

λene
3

3
< [A,Π],Π > +

λene
3qH

3
(< φ, φ > −v2) < [A, φ], φ >

= PAY (ν) − LAY (ν)(ω−ω0)ν
+HA

Y (n) −MA
Y ν(A−A0)ν

+ PHY (ν) − LHY (ν)(ω−ω0)ν

+HH
Y (n) − PY (ν) + LY (ν)(ω−ω0)ν −HY (n)

+

∫
Σ

Lω0+A0

ξ (λen)
e2

2
< Π, [A, φ] >

= PH,A
Y (ν) − LH,AY (ν)(ω−ω0)ν

+HH,A
Y (n) −MH,A

Y ν(A−A0)ν
,

having used (45).

{HH,A
λ , HH,A

λ }YMH = {HH
λ , H

H
λ }H + {HA

λ , H
A
λ }A − {Hλ, Hλ}

+ 2ιhH,Aλ
δHH,A

λ − ιhH,Aλ
ιhH,Aλ

ΩYMH = 0,

in fact all terms in 2ιhH,Aλ
δHH,A

λ − ιhH,Aλ
ιhH,Aλ

ΩSM contain either (λen)2 = 0 or λendω(λen) =

0.

Remark 20. Notice that, after choosing U(1) as the gauge group and setting qH = 0, we obtain
scalar electrodynamics coupled to gravity as a particular case of this theory.

4.3 Yukawa interaction

The interaction of a scalar field and a spinor field takes the name of Yukawa interaction.
As before, let us denote the spinor field by ψ ∈ S(M) and a scalar field by φ ∈ C∞(M).

Then an action on the bulk for the Yukawa interaction (i.e. an action correctly reproducing the
classical Euler–Lagrange equations) is given by

SY = S + Sψ + Sφ + gY

∫
M

1

2N !
eNψφψ

where gY is a coupling constant, Sφ is defined in (18) and Sψ in (32). Since the additional
interaction term does not have derivatives, the geometric phase space will be just the direct sum
of the building blocks composing this theory. In particular we have that the geometric phase
space is the bundle

F ∂Y → Ω1
en(Σ,VΣ)⊕ C∞(Σ)× S(Σ)× S(Σ)
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with fiber Ared(Σ)⊕ Ω
(0,1)
Σ,red such that (19) and (33) are satisfied.

The corresponding symplectic form is again just the sum of the symplectic form of the building
blocks:

ΩY = $ +$ψ +$φ.

Let us now consider the constraints. By the previous computation we already know that for
a spinor field and a scalar field coupled to gravity the functions building up the constraints are
those corresponding to the variations δe and δω, since all the other ones are evolution equations.
From the expression of the action of the Yukawa interaction, we deduce that there are no other
constraints than the pure gravity ones and that the only one that is modified is Hλ. Let

hφ,ψλ := gY

∫
Σ

λen
1

2(N − 1)!
e(N−1)ψφψ (51)

Then the constraints for Yukawa theory are:

Lφ,ψc = Lc + lψc ; Pφ,ψξ = Pξ + pφξ + pψξ ; Hφ,ψ
λ = Hλ + hφλ + hψλ + hφ,ψλ .

Once again, these constraints define a coisotropic submanifold with Poisson brackets analogous
to the gravity case, as specified by the following theorem.

Theorem 21. Assume that g∂ is non-degenerate on Σ. Then, the zero locus of the functions
Lφ,ψc , Pφ,ψξ , Hφ,ψ

λ defined above is coisotropic submanifold with respect to the symplectic structure
ΩY . Their mutual Poisson brackets read

{Lφ,ψc , Lφ,ψc }Y = −1

2
Lφ,ψ[c,c] {Lφ,ψc , Pφ,ψξ }Y = Lφ,ψ

L
ω0
ξ c

{Lφ,ψc , Hφ,ψ
λ }Y = −Pφ,ψ

X(ν) + Lφ,ψ
X(ν)(ω−ω0)ν

−Hφ,ψ
X(n) {Pφ,ψξ , Pφ,ψξ }Y =

1

2
Pφ,ψ[ξ,ξ] −

1

2
Lφ,ψιξιξFω0

{Pφ,ψξ , Hφ,ψ
λ }Y = Pφ,ψ

Y (ν) − Lφ,ψY (ν)(ω−ω0)ν
+Hφ,ψ

Y (n) {Hφ,ψ
λ , Hφ,ψ

λ }Y = 0

with the same notation as in Theorem 7.

Proof. We use the results proved in Section 2. The expressions of L,lφ, lψ, P, pφ, pψ, H, hφ

and hψ have been computed in [CCF22] and are collected in Appendix B. Let us start with the
constraint Lφ,ψc . We first notice that ιlφ$ψ = ιlψ$φ = 0. The variation of the interaction term
is lφ,ψc = 0, hence we also conclude

lφ,ψ = 0.

For Pφ,ψξ , we work in the same way and find

pφ,ψ = 0.

On the other hand, for Hφ,ψ
λ we get ιhφ$ψ = 0 and

ιhψ$φ =

∫
Σ

1

2
e2hψe Πδφ.

Note that we will not need the explicit expression. The variation of the interaction term reads

δhφ,ψλ := gY

∫
Σ

λen

(
1

4
e2δeψφψ +

1

2 · 3!
e3δψφψ − 1

2 · 3!
e3ψδφψ − 1

2 · 3!
e3ψφδψ

)
.
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Hence we get:

hφ,ψe = 0 ehφ,ψω = 0

hφ,ψφ = 0
1

3!
e3hφ,ψΠ = −1

2
e2hψe Π +

1

2 · 3!
gY λene

3ψψ

γhφ,ψψ = − i
2
gY λenφψ hφ,ψ

ψ
γ =

i

2
gY λenψφ

In order to compute the Poisson brackets of the constraints we use Theorem 2. We first note
that for all constraints we have

ιX+xψ ιY+yψ$φ + ιX+xφιY+yφ$ψ = 0.

For the computations we use repeatedly the results of Theorem7 and the corresponding results
in presence of a scalar field and and spinor field. Not writing the zero terms we have

{Lφ,ψc , Lφ,ψc }Y = {Lc + lφc , Lc + lφc }φ + {Lc + lψc , Lc + lψc }ψ − {Lc, Lc}
+ ιlφιlψΩY + ιlψ ιlφΩY

= −1

2
L[c,c] −

1

2
lψ[c,c] = −1

2
Lφ,ψ[c,c]

where we used for the second line lφe = lψe = 0. Similarly

{Lφ,ψc , Pφ,ψξ }Y = {Lc + lφc , Pξ + pφξ }φ + {Lc + lψc , Pξ + pψξ }ψ − {Lc, Pξ}
+ ιlφιpψΩY + ιlψ ιpφΩY

= LL
ω0
ξ c + lψ

L
ω0
ξ c

= Lφ,ψ
L
ω0
ξ c

where we used for the second line lφe = pφe = lψe = pψe = 0, and

{Pφ,ψξ , Pφ,ψξ }Y = {Pξ + pφξ , Pξ + pφξ }φ + {Pξ + pψξ , Pξ + pψξ }ψ − {Pξ, Pξ}
+ ιpφιpψΩY + ιpψ ιpφΩY

=
1

2
P[ξ,ξ] −

1

2
LιξιξFω0

+
1

2
pφ[ξ,ξ] +

1

2
pψ[ξ,ξ] −

1

2
lψιξιξFω0

=
1

2
Pφ,ψ[ξ,ξ] −

1

2
Lφ,ψιξιξFω0

For the brackets with Hφ,ψ
λ we have to take into account more terms:

{Lφ,ψc , Hφ,ψ
λ }Y = {Lc + lφc , Hλ + hφλ}φ + {Lc + lψc , Hλ + hψλ}ψ − {Lc, Hλ}

+ ιhφ,ψδ(Lc + lψc )
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Let us compute the last term:

ιhφ,ψδ(Lc + lψc ) =

∫
Σ

−ce[hφ,ψω , e]− i e3

2 · 3!

(
−[c,hφ,ψ

ψ
]γψ − hφ,ψ

ψ
γ[c, ψ]

)
− i e3

2 · 3!

(
−[c, ψ]γhφ,ψψ + ψγ[c,hφ,ψψ ]

)
=

∫
Σ

−1

4
gY ce[λeneψφψ, e]− i

e3

2 · 3!

(
−[c,hφ,ψ

ψ
]γψ − hφ,ψ

ψ
γ[c, ψ]

)
− i e3

2 · 3!

(
−[c, ψ]γhφ,ψψ + ψγ[c,hφ,ψψ ]

)
= −

∫
Σ

e3

2 · 3!
gY [c, λen]ψφψ

Where we used the properties listed in [CCF22, Appendix B.5] for the bracket [·, ·] on spinors.

The result is easily recognized as hφ,ψ
X(n) . Hence we get

{Lφ,ψc , Hφ,ψ
λ }Y = −PX(ν) + LX(ν)(ω−ω0)ν −HX(n) − pφ

X(ν) − hφX(n) − pψX(ν)

+ lψ
X(ν)(ω−ω0)ν

− hψ
X(n) − hφ,ψX(n)

= −Pφ,ψ
X(ν) + Lφ,ψ

X(ν)(ω−ω0)ν
−Hφ,ψ

X(n)

Analogously we compute

{Pφ,ψξ , Hφ,ψ
λ }Y = {Pξ + pφξ , Hλ + hφλ}φ + {Pξ + pψξ , Hλ + hψλ}ψ − {Pξ, Hλ}

+ ιhφ,ψδ(Pξ + pψξ + pφξ ) + ιhψ ιpφΩY

Let us consider the terms in the second row. We have

ιhψ ιpφΩY =

∫
Σ

1

2
e2hψe Πpφφ = −

∫
Σ

1

2
e2hψe ΠLξφ.

On the other hand we have

ιhφ,ψδ(Pξ + pψξ + pφξ ) =

∫
Σ

− 1

3!
e3hφ,ψΠ Lξφ− i

e3

2 · 3!

(
hφ,ψ
ψ

γLω0

ξ (ψ) + Lω0

ξ (ψ)γhφ,ψψ

)
− i

2 · 3!

(
Lω0

ξ (e3ψ)γhφ,ψψ + hφ,ψ
ψ

γLω0

ξ (e3ψ)
)

=

∫
Σ

1

2
e2hψe ΠLξφ−

1

2 · 3!
gY λene

3ψψLξφ

+
e3

2 · 3!

(
1

2
gY λenψφLω0

ξ (ψ)− 1

2
gY λenLω0

ξ (ψ)φψ

)
− 1

2 · 3!

(
1

2
gY λenLω0

ξ (e3ψ)φψ − 1

2
gY λenψφLω0

ξ (e3ψ)

)
=

∫
Σ

−gY
1

2 · 3!
λenLω0

ξ (e3ψφψ) +
1

2
e2hψe ΠLξφ

=

∫
Σ

gY
1

2 · 3!
Lω0

ξ (λen)e3ψφψ +
1

2
e2hψe ΠLξφ.
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where we used Lω0

ξ γ = 0. The second term in the last row cancels out with the one computed

above, while the first is exactly hφ,ψ
Y (n) . Hence collecting all the terms we get

{Pφ,ψξ , Hφ,ψ
λ }Y = PY (ν) − LY (ν)(ω−ω0)ν +HY (n) + pφ

Y (ν) + hφ
Y (n) + pψ

Y (ν)

− lψ
Y (ν)(ω−ω0)ν

+ hψ
Y (n) + hφ,ψ

Y (n)

= −Pφ,ψ
Y (ν) + Lφ,ψ

Y (ν)(ω−ω0)ν
−Hφ,ψ

Y (n) .

Finally we consider

{Hφ,ψ
λ , Hφ,ψ

λ }Y = {Hλ + hφλ, Hλ + hφλ}φ + {Hλ + hψλ , Hλ + hψλ}ψ − {Hλ, Hλ}

+ 2ιhφ,ψδ(Hλ + hφλ + hψλ + hφ,ψλ )− ιhφ,ψ ιhφ,ψΩY + 2ιhφιhψΩY .

All the terms of the first line are zero, as proved in the previous theorems. Furthermore notice
that Hλ + hφλ + hψλ + hφ,ψλ is proportional to λ, as well as hφ,ψ, hφ and hψ. Since λ2 = 0, we

conclude that {Hφ,ψ
λ , Hφ,ψ

λ } = 0.

5 Standard Model

We now consider the full theory of gravity coupled to a Yang–Mills, a Higgs scalar and a spinor
fields as defined in the previous sections. One recovers the usual structure of the standard model
by choosing the appropriate gauge group and its representation on the various fields. The action
reads:

SSM = S + SA + Sψ + SH + Sψ,A + SH,ψ.

In order to have a well defined Yukawa interaction term SH,ψ, the space of Dirac spinors is
split as the direct sum of left-handed and right-handed Weyl spinors10, i.e.

S = SR ⊕ SL,

corresponding respectively to the projections of S onto the eigenspaces of γ5 := −Π3
a=0γa. In

particular, defining the projectors PR/L := 1±γ5

2 , for any ψ ∈ S, we obtain

ψL = PL(ψ) ∈ SL ψR = PR(ψ) ∈ SR.

We choose ψR to be in the same representation space of G as the Higgs field φ,11 while ψL is set
to be in the trivial one. Hence, the Yukawa interaction term is

SH,ψ =

∫
M

e4

2 · 4!
gY
[
ψ̄L < φ,ψR > − < φ, ψ̄R > ψL

]
.

On the boundary Σ, the geometric phase space is given by

F ∂SM → Ω1
en(Σ,VΣ)⊕AGΣ ⊕Γ(Σ, (SR⊗En))⊕Γ(Σ, (S̄R⊗En))⊕Γ(Σ, SL)⊕Γ(Σ, S̄L)⊕Γ(Σ, En),

with fiber given by AΣ ⊕ Ω
(0,2)
∂,red(g)⊕ Ω

(0,1)
∂,red(En) satisfying (33),(24) and (19).

10
::
We

::::
treat

:::::::::
left-handed

::::
and

::::::::::
right-handed

::::
Weyl

:::::
spinors

::::::::
separately

:::::::
because,

::
as

:::
we

::
see

:::::
below

::
in

::::
their

:::
two

:::::::
different

:::::::::::
representations

::
of

:::
the

::::::
algebra

::
G,

:::
the

:::::::
Standard

:::::
Model

::
(in

::::::::
particular

:::
the

:::::::::
electroweak

:::::::::
interaction)

::::::
couples

::::::::
differently

::
to

:::
the

:::
two

::::
Weyl

:::::::
spinors.

::::
This

:::::
point

::
is

::
of

::::::::::
fundamental

:::::::::
importance

:::::::
because

:
it
::::::::

accounts,
:::
for

::::::::
examples,

:::
for

:::
the

::::::
manifest

:::::
parity

:::::::
violation

::
of
:::
the

::::::
theory.

11In particular ψR ∈ Γ(SR ⊗ En).
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The corresponding symplectic structure is simply given by

ΩSM = $ +$A +$ψL +$ψR +$H ,

where

$ψR =

∫
Σ

i

4
e2(< δψ̄Rγ, ψR > − < ψ̄Rγ, δψR >)δe+

i

3!
e3 < δψ̄Rγ, δψR >

while, defining xψL/R := xψL + xψR , the constraints are

LSMc = Lc + l
ψL/R
c ,

PSMξ = Pξ + pAξ + p
ψL/R
ξ + pHξ + p

A,ψL/R
ξ + pH,Aξ ,

MSM
µ = MA

µ +mH,A
µ +m

A,ψL/R
µ ,

HSM
λ = Hλ + hAλ + h

ψL/R
λ + hHλ + h

A,ψL/R
λ + hH,Aλ + h

H,ψL/R
λ .

Given the absence of any triple interaction between the fields, it is easy to check that there does
not exist a non-vanishing xH,A,ψ satisfying

ιxH,A,ψΩSM = −ιxH,A$ψ − ιxH,ψ$A − ιxA,ψ$H ,

then the Hamiltonian vector fields associated to constraints are just the sums of the ones found
in the previous sections.

PSM = P + pA + pH + pH,A + Σi=L,R(pψi + pA,ψi)

HSM = H + hA + pH + hH,A + Σi=L,R(hψi + hA,ψi) + hH,ψ

LSM = L + Σi=L,Rlψi

MSM = MA + mH,A + Σi=L,RmA,ψi

One only has to be careful regarding hH,ψψL/R
, indeed

γhH,ψψL
= − i

2
gY λen < φ,ψR > γhH,ψψR

= − i
2
gY λenφψL

Theorem 22. Assume that g∂ is nondegenerate on Σ. Then, the zero locus of the functions LSMc ,
PSMξ , HSM

λ and MSM
µ defined above is a coisotropic submanifold with respect to the symplectic

structure ΩSM . Their mutual Poisson brackets read

{LSMc , LSMc }SM = −
1

2
LSM[c,c] {LSMc , PSMξ }SM = LSM

L
ω0
ξ
c

{LSMc ,MSM
µ }SM = 0 {LSMc , HSM

λ }SM = −PSM
X(ν) + LSM

X(ν)(ω−ω0)ν
−HSM

X(n) +MSM
Xν(A−A0)ν

{MSM
µ , PSMξ }SM = MSM

L
A0
ξ
µ

{PSMξ , HSM
λ }SM = PSM

Y (ν) − LSMY (ν)(ω−ω0)ν
+HSM

Y (n) −MSM
Y ν(A−A0)ν

{MSM
µ , HSM

λ }SM = 0 {PSMξ , PSMξ }SM =
1

2
PSM[ξ,ξ] −

1

2
LSMιξιξFω0

−
1

2
MSM
ιξιξFA0

{MSM
µ ,MSM

µ }SM = −
1

2
MSM

[µ,µ] {HSM
λ , HSM

λ }SM = 0

with the same notation as in Theorem 7.
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Proof. We make use of Theorem 3 to compute the following brackets. Omitting the vanishing
terms, we obtain

{LSMc , LSMc }SM = {Lc + l
ψL/R
c , Lc + l

ψL/R
c }SM

= {Lc + l
ψL/R
c , Lc + l

ψL/R
c }ψL/R = −1

2
L
ψL/R
[c,c] = −1

2
LSM[c,c];

{LSMc , PSMξ }SM = {LA,ψL/Rc , P
A,ψL/R
ξ }A,ψL/R = L

A,ψL/R
Lω0c = LSMLω0c;

{LSMc ,MSM
µ }SM = {LA,ψL/Rc ,M

A,ψL/R
µ }A,ψL/R = 0;

{LSMc , HSM
λ }SM =

∫
Σ

λen
(1

2
[c, e2 < Π, dAφ >] +

[c, e3]

2 · 3!
(< (Π,Π) > +2VH)

)
+ {LA,ψL/Rc , H

A,ψL/R
λ }A,ψL/R

= −
∫

Σ

[c, λen]

(
e2

2
< Π, dAφ > +

e3

2 · 3!
(2VH < (Π,Π) >)

)
+ {LA,ψL/Rc , H

A,ψL/R
λ }A,ψL/R

= −PSMX(ν) + LSMX(ν)(ω−ω0)ν
−HSM

X(n) +MSM
Xν(A−A0)ν

;

{MSM
µ , PSMξ }SM = {MA,ψL/R

µ , P
A,ψL/R
ξ }A,ψL/R

−
∫

Σ

< [µ, p],Lω0+A0

ξ φ > + < p,Lω0+A0

ξ [µ, φ] >

= {MA,ψL/R
µ , P

A,ψL/R
ξ }A,ψL/R

−
∫

Σ

< p, [µ,Lω0+A0

ξ φ] + [LA0

ξ µ, φ]− [µ,Lω0+A0

ξ φ] >

= M
A,ψL/R

L
ω0
ξ µ

−
∫

Σ

< p,Lω0

ξ µ;

{MSM
µ , HSM

λ }SM =

∫
Σ

λen
[e2

2
(< [µ,Π], dAφ > + < Π, [dAµ, φ] > − < Π, dA[µ, φ] >)

+ gY ψ̄L
e3

3!
(< [µ, φ], ψL > + < φ, [µ, ψL] >)

]
+ {MA,ψL/R

µ , H
A,ψL/R
λ }A,ψL/R

=

∫
Σ

λen
[e2

2
[µ,< Π, dAφ >] + gY ψ̄L

e3

3!
[µ,< φ, ψR >]

]
= 0;

{MSM
µ ,MSM

µ }SM = {MA,ψL/R
µ ,M

A,ψL/R
µ }A,ψL/R +

∫
Σ

< [µ, p], [µ, φ] >

= −1

2
M

A,ψL/R
[µ,µ] +

1

2

∫
Σ

< p, [µ, [µ, φ]] >

= −1

2
MSM

[µ,µ];
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In the computation of the next couple of brackets we follow verbatim the steps in the analogous
brackets in the Yang–Mills-Higgs section.

{PSMξ , PSMξ }SM = {PA,ψL/Rξ , P
A,ψL/R
ξ }A,ψL/R

+
1

2

∫
Σ

< Lω0+A0

ξ p,Lω0+A0

ξ φ > + < p,Lω0+A0

ξ Lω0+A0

ξ φ >

=
1

2
PSM[ξ,ξ] −

1

2
LSMιξιξFω0

− 1

2
MSM
ιξιξFA0

;

{PSMξ , HSM
λ }SM = −

∫
Σ

λen

[
1

2
Lω0

ξ (e2) < Π, dAφ > +
1

2 · 3!
Lω0

ξ (e3)ψ̄L < φ,ψR >

]
−
∫

Σ

λen

[
1

2 · 3!
Lω0

ξ (e3) (< (Π,Π) > +2VH) +
e2

2
(< Lω0+A0

ξ Π, dAφ >

]
−
∫

Σ

λen

[
−e

2

2
< Π,

[
LA0

ξ (A−A0) + ιξFA0 , φ
]
> +

e2

2
< Π, dALω0+A0

ξ φ >

]
+

∫
Σ

λen
e3

2 · 3!
Lω0+A0

ξ

(
ψ̄L < φ,ψR > + < (Π,Π) > +2VH

)
+ {PA,ψL/Rξ , H

A,ψL/R
λ }A,ψL/R

=

∫
Σ

Lω0

ξ (λen)

[
e2

2
< Π, dAφ > +

e3

2 · 3!
(ψ̄L < φ,ψR > + < (Π,Π) > +2VH)

]
+ {PA,ψL/Rξ , H

A,ψL/R
λ }A,ψL/R

= PSMY (ν) − LSMY (ν)(ω−ω0)ν
+HSM

Y (n) −MSM
Y ν(A−A0)ν

.

Lastly, in the computation of {HSM
λ , HSM

λ }, it is easy to see that all the additional terms are
proportional to λ2 = 0, producing the desired result.

6 BFV formalism

For a precise formulation of the BFV formalism and the construction of a BFV theory out of
the classical description of the RPS via symplectic spaces and constraints we refer to [CCS21b,
Section 5.1]. We recall here the definition of BFV theory and its relation to the reduced phase
space of a theory.

Definition 23. A BFV theory is a triple F = (F ,S, $) where F is a graded manifold (the space
of boundary BFV fields) endowed with a degree-0 exact symplectic form $ = δα and S : F → R
is a degree 1 functional such that {S,S} = 0, satisfying the Classical Master Equation (CME),
where the Poisson brackets {·, ·} are those inherited from the symplectic form $.

Note that sometimes this is referred as a strict BFV theory. From a BFV theory it is always
possible to define a cohomological vector field Q as the Hamiltonian vector field of S with respect
to $. Then the CME is equivalent to Q2 = 0. Under this condition, Q is a differential graded
vector field and it makes sense to consider its cohomology. It turns out that, if we construct a
BFV theory in the proper way, the zeroth cohomology of Q is isomorphic to the space of invariant
functions on the coisotropic submanifold generated by the constraints.

Namely, let us denote by by Xci the set of constraints, with ci the corresponding Lagrange
multiplier. We can extend the geometric phase space (F,$geom) to a graded symplectic manifold
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F × T ∗W where W is the odd vector space whose coordinates are the cis. The new symplectic
form, or BFV form is then $BFV = $geom +

∫
Σ
δc†i δc

i where we denoted by c†i the fields in the
fiber of T ∗W . Then we can define the BFV action, an odd function of degree 1,

S =

∫
Σ

ciφi +
1

2
fkijc

†
kc
icj +R,

where R is a function of higher degree in the ghost momenta c†i , chosen such that {S, S} = 0. Such
a correction R can always be found [BV81; BF83; Sta97]. If we now let Q be the Hamiltonian
vector field of S, then the zeroth cohomology of it is isomorphic to the space of functions on the
reduced phase space.

In the following sections we will use this construction by first applying it to the theories with
two gauge/matter fields and using these results to the standard model.

Note that given the results already proven in the previous sections, here we just have to find
R in order to get the CME. In particular, in all the cases we will prove that R = 0. In order to
do it we will repeatedly use Theorem 4 with the results collected in Appendix A.

6.1 Yang–Mills-Spinor

Theorem 24. Let FYMS be the bundle

FYMS −→ Ω1
en(Σ,VΣ)⊕AGΣ ⊕ S(Σ)⊕ S(Σ),

with local trivialisation on an open UYMS
Σ ⊂ Ω1

en(Σ,VΣ)⊕AGΣ ⊕ S(Σ)⊕ S(Σ)

FYMS ' UΣ × Tgrav × Ω
(0,2)
Σ,red(g)× T ∗(Γ(Σ, g[1]))

where Tgrav was defined in (14) and the fields satisfy (24) and (33). The symplectic form and
the action functional on FYMS are respectively defined by

ΩBFVYMS = ΩBFV +$A +$A
ghost +$ψ, (52)

SYMS = S + pAξ + hAλ +MA
µ + SAghost + lψc + pψξ + hψλ + pA,ψξ + hA,ψλ +mA,ψ

µ (53)

where $A
ghost and SAghost are defined in Theorem 11. Then the triple (FYMS ,Ω

BFV
YMS ,SYMS)

defines a BFV structure on Σ.

Proof. We apply Theorem 4 and consider as the starting BFV theory that of the Yang–Mills
field coupled to gravity. Since from Theorem 14 we already know that the brackets of the
interacting theory have the same structure of the one with just gravity coupled to Yang–Mills
(given in Theorem 10), we can use the observation of Remark 5 and we must check just that
ιq0ιQ1

($ +$A) = 0. We have that

q0 = lψ + pψ + pA,ψ + hψ + hA,ψ + mA,ψ + w

where w contains terms in the direction of antifields. In particular, from the expression of
ιQ1

($+$A) expressed in Appendix A, we are interested in the components of q0 in the direction
of e, ω and ρ. Using the expression for the Hamiltonian vector fields of Appendix B and of Section
4.1 we get

(q0)e = hψe = λ(σ̃ − σ)

(q0)ω = hψω + hA,ψω = − i
2
λenψγ[A,ψ] + i

λen
4

(ψγdωψ − dωψγψ) + V

(q0)ρ = hA,ψρ = −1

2
λene

2ψγ[·, ψ].
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Since all these components are proportional to λ and ιQ1($ +$A) is proportional to λ as well,
we conclude that ιq0ιQ1

($ +$A) ∼ λ2 = 0.

6.2 Yang–Mills-Higgs

Theorem 25. Let FYMH be the bundle

FYMH −→ Ω1
en(Σ,VΣ)⊕AGΣ ⊕ Γ(Σ, En),

with local trivialisation on an open UYMH
Σ ⊂ Ω1

en(Σ,VΣ)⊕AGΣ ⊕ Γ(Σ, En)

FYMH ' UYMH
Σ × Tgrav × Ω1(Σ, En ⊗ VΣ)red × Ω

(0,2)
Σ,red(g)× T ∗(Γ(Σ, g[1]))

where Tgrav was defined in (14) and the fields Π ∈ Ω1(Σ, En ⊗ VΣ)red and B ∈ Ω
(0,2)
Σ,red(g) sat-

isfy respectively (19) and (24). The symplectic form and the action functional on FYMH are
respectively defined by

ΩBFVYMH = ΩBFV +$A +$A
ghost +$H ,

SYMH = S +MA
µ + pAξ + hAλ + SAghost +mH,A

µ + pHξ + pH,Aξ + hHλ + hH,Aλ .

where $A
ghost and SAghost are defined in Theorem 11. Then the triple (FYMH ,Ω

BFV
YMH ,SYMH)

defines a BFV structure on Σ.

Proof. As before we apply Theorem 4 and consider as the starting BFV theory that of the
Yang–Mills field coupled to gravity. Again, from Theorem 19 we know that the brackets of the
interacting theory have the same structure of the one with just gravity coupled to Yang–Mills
(given in Theorem 10), hence we can use the observation of Remark 5 and we must check just
that ιq0ιQ1

($ +$A). We have that

q0 = lH + pH + pH,A + hH + hH,A + mH + w

where w contains terms in the direction of antifields. In particular, from the expression of
ιQ1

($+$A) expressed in Appendix A, we are interested in the components of q0 in the direction
of e, ω and ρ. Using the expression for the Hamiltonian vector fields of Appendix B and of Section
4.2 we get

(q0)e = 0

(q0)ω = hHω + hH,Aω = λen

(
< Π, dφ > +

e

4
< (Π,Π) > +

e

2
VH

)
− λen

2
< Π, [A, φ] > −λ

2
e < Π, (Π, en) > +V

(q0)ρ = hH,Aρ =
i

4
gHλene

2Tr(Πφ† − φΠ†).

Since all these components are proportional to λ and ιQ1($ +$A) is proportional to λ as well,
we conclude that ιq0ιQ1

($ +$A) ∼ λ2 = 0.

6.3 Yukawa interaction

Theorem 26. Let FY be the bundle

FY −→ Ω1
en(Σ,VΣ)⊕ C∞(Σ)⊕ S(Σ)⊕ S(Σ),
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with local trivialisation on an open UΣ

FY ' UΣ × Tgrav × Ω
(0,1)
∂,red

where Tgrav was defined in (14) and the fields satisfy (19) and (33). The symplectic form and
the action functional on FY are respectively defined by

ΩBFVY = ΩBFV +$φ +$ψ,

SY = Sgrav + pφξ + hφλ + lψc + pψξ + hψλ + hφ,ψλ .

Then the triple (FY ,ΩBFVY ,SY ) defines a BFV structure on Σ.

Proof. We apply Theorem 4 but in this case we consider as the starting theory gravity coupled
to the the scalar field. The expression of the brackets of the constraints of the interacting theory
(Theorem 21) and that of gravity coupled with the scalar theory (Section 3.2) are the same,
hence by Remark 5 we just have to check that ιq0ιQ1($ +$φ) = 0. We have

q0 = lψ + lφ,ψ + pψ + pφ,ψ + hψ + hφ,ψ + w

where w contains terms in the direction of antifields while the expression of ιQ1
($ + $φ) is

collected in Appendix A. Hence we are interested in q0 only in the direction of e, ω and φ. From
the expression of the Hamiltonian vector fields collected in Appendix B and in Section 4.3 we
get

(q0)e = hψe = λ(σ̃ − σ)

(q0)ω = hψω = i
λen
4

(ψγdωψ − dωψγψ) + V

(q0)φ = 0.

These components are all proportional to λ. Since the components of ιQ1
($ + $φ) are also all

proportional to λ, we get that ιq0ιQ1
($+$φ) is proportional to λ2 = 0. Hence we conclude that

SY satisifies the classical master equation.

6.4 Standard Model

Finally in this section we present one of the main results of this paper. Indeed, we characterize,
using the BFV formalism, the Reduced Phase Space of the standard model coupled to gravity. A
BFV theory whose zeroth cohomology is isomorphic to it is described in the following theorem.

Theorem 27. Let FSM be the bundle

FSM −→ Ω1
en(Σ,VΣ)⊕AGΣ ⊕ S(Σ)⊕ S(Σ)⊕ Γ(Σ, En),

with local trivialisation on an open USMΣ ⊂ Ω1
en(Σ,VΣ)⊕AGΣ ⊕ S(Σ)⊕ S(Σ)⊕ Γ(Σ, En)

FSM ' UΣ × Tgrav × Ω
(0,2)
∂ (g)red × T ∗(Γ(Σ, g[1]))× Ω1(Σ, En ⊗ VΣ)red

where Tgrav was defined in (14) and the fields satisfy (24), (19) and (33). The symplectic form
and the action functional on FSM are respectively defined by

ΩBFVSM = ΩBFV +$A +$A
ghost +$ψL +$ψR +$H ,

SSM = Sgrav + pAξ + hAλ +MA
µ + SAghost + l

ψL/R
c + p

ψL/R
ξ + h

ψL/R
λ + pHξ + hHλ

+ p
A,ψL/R
ξ + h

A,ψL/R
λ +m

A,ψL/R
µ + pH,Aξ + hH,Aλ +mH,A

µ + h
H,ψL/R
λ
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where $A
ghost and SAghost are defined in Theorem 11. Then the triple (FSM ,ΩBFVSM ,SSM ) defines

a BFV structure on Σ.

Proof. We apply Theorem 4 once again but this time we consider as the starting BFV theory the
building block given in Section 6.1, i.e. the BFV theory given by Yang–Mills and spinor fields
coupled to gravity. Once again we can apply the observation in Remark 5 since the brackets of
the two theories considered are the same (see Theorems 14 and 22). Hence we just have to check
that ιq0ιQ1

($ + $A + $ψL + $ψR), where Q1 satisfies ιQ1
ΩBFVYMS = δSYMS

1 with SYMS
1 being

the part linear in the antifields of SYMS defined in (53) and ΩBFVYMS being defined in (52). On
the other hand we have

q0 = pH + hH + pH,A + hH,A + mH,A + hH,ψL/R + w

with w containing terms in the direction of antifields. In particular, from the expression of
ιQ1($+$A +$ψL +$ψR) expressed in Appendix A, we are interested in the components of q0

in the direction of e, ω, ψL, ψL, ψR, ψR and ρ. Using the expression for the Hamiltonian vector
fields of Appendix B and of Sections 4.2 and 4.3 we get

(q0)e = 0

(q0)ω = hHω + hA,Hω = λen

(
< Π, dφ > +

e

4
< (Π,Π) > +

e

2
VH

)
− λ

2
eΠ(Π, en)

− λen
2

< Π, [A, φ] > +VhH

γ(q0)ψL = γhH,ψLψL
= − i

2
gY λenφψL

(q0)ψLγ = hH,ψL
ψL

γ =
i

2
gY λenψLφ

γ(q0)ψR = γhH,ψRψR
= − i

2
gY λenφψR

(q0)ψRγ = hH,ψR
ψR

γ =
i

2
gY λenψRφ

(q0)ρ = hH,Aρ =
igH
4
λene

2Tr(Πφ† − φΠ†)

Since all these components are proportional to λ and ιQ1
($+$A +$ψL +$ψR) is proportional

to λ as well, we conclude that ιq0ιQ1$f ∼ λ2 = 0.

7 Light-like boundary

In the preceding sections, we have consistently assumed that the pulled-back boundary metric
g∂ = ι∗g was non-degenerate. In the degenerate case some adaptations need to be taken into
account.

7.1 Gravity, light-like boundary

The analysis of the symplectic reduction to obtain the geometric phase space is independent of
the nature of the boundary metric. Specifically, in both the degenerate and non-degenerate cases,
the symplectic form remains unchanged. However, when dealing with a light-like boundary, the
geometric phase space has to be described differently, since it is not always possible to find a
couple (e, ω) satisfying (8). Hence, it must be weakened and this leads to a new constraint. The
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details of this construction for gravity have been worked out in [CCT21] and the most important
ones are recalled in Appendix C together with the definition of some of the spaces used. Here
we just recall the results.

The Geometric phase space of gravity on a light-like boundary is a bundle

F ∂d → Ω1
en(Σ,VΣ)

with fiber Ared(Σ) where the fields ω ∈ Ared(Σ) satisfy the structural constraint

en(dωe− pT (dωe)) = eσd (54)

for some σd ∈ Ω1(Σ,VΣ) and

pKω = 0 (55)

where the space K is defined in Definition 40 in Appendix C. The corresponding symplectic
form on F ∂d is given by $ as in the non-degenerate case:

$ =

∫
Σ

eδeδω.

On this geometric phase space the constraints are the same of
::
we

:::::
retain

::::
the

::::
same

::::::::::
constraints

:::
as

::
in the non-degenerate theory,

::::::::
together

:
with an additional one

:
,
:::::::
defined

::
in

:::
the

::::::::
following

:::::::::
definition.

Definition 28. The set of integral functionals defining the constraints of the theory are Lc, Hλ

and Pξ as defined in Section 3.1, with the additional constraint

Rτ =

∫
Σ

τdωe, (56)

with τ ∈ S where the space S is defined in Definition 40 in Appendix C.

The presence of the additional constraint spoils the coisotropicity of the zero set, as proved
by the following.

Theorem 29 ([CCT21]). Let g∂ be degenerate on Σ. Then, the set of constraints Lc, Hλ, Pξ
and Rτ given in Definition 28 does not form a first class system.

Remark 30. The presence of the constraint Rτ is causing the constraint set to be second class. We
interpret this fact as the essential peculiarity of the degenerate theory. In particular the number
of local degrees of freedom is only one instead of two as in the case of the non-degenerate theory.

As we have done for a space or time-like boundary, in the following sections, we recall the
description of the reduced phase space for gravity coupled with some gauge and matter fields.

7.2 Scalar field, light-like boundary

In this section, we will briefly summarize the findings shown in [Cat+23] about the degenerate
structure of gravity coupled with a scalar field. We use the same notation as in the non-degenerate
case and we refer to Section 3.2 for the definition of the quantities mentioned here.

The geometric phase space is the bundle

F ∂d,φ → Ω1
en(Σ,VΣ)⊕ C∞(Σ)
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with fiber Ared(Σ)⊕Ω
(0,1)
∂,red such that the structural constraints (54), (55) and (19) are satisfied.

F ∂d,φ is a symplectic space with symplectic form Ωφ = $ + $φ. The set of constraints in this
space is given by

Lc, Pφξ = Pξ + pφξ , Hφ
λ = Hλ + hφλ and Rτ

Then, it has been proven that these functions are not of first class and hence they do not define
a coisotropic submanifold.

7.3 Yang–Mills, light-like boundary

Let us now consider gravity coupled with a Yang–Mills field. We refer again to [Cat+23] for
more details. The geometric phase space is the bundle

F ∂d,A → Ω1
en(Σ,VΣ)⊕AGYM

:: Σ

with fiber Ared(Σ) ⊕ Ω
(0,2)
Σ,red(g) such that, the structural constraints (54), (55) and (24) are

satisfied. The symplectic form on F ∂d,A reads ΩA = $ +$A.

The constraints of the theory are LAc , HA
λ , PAξ and MA

µ as defined in Section 3.3, with the
additional Rτ defined in 3.1.

The algebra of constraints has been computed, leading to the result that this set of constraints
do not form a first class system.

7.4 Spinor, light-like boundary

We now consider the theory of gravity coupled with a Dirac spinor. We refer once more to
[Cat+23] for more details. The geometric phase space is the bundle

F ∂d,ψ → Ω1
en(Σ,VΣ)× S(Σ)× S(Σ)

with fiber Ared(Σ) such that (55) and

en
[
α(e, ω, ψ, ψ̄)− pT (α(e, ω, ψ, ψ̄))

]
= eσ̃d (57)

are satisfied for some σ̃d ∈ Ω1(Σ,VΣ), where α(e, ω, ψ, ψ̄) = dωe+ i
4 (ψ̄γ[e2, ψ]− [e2, ψ̄]γψ). The

symplectic form on this space is given by Ωψ = $ +$ψ.

The constraints on this space are given are Lψc , Hψ
λ and Pψξ as defined in Section 3.4, with

the additional constraint

Rψτ = Rτ ,

with τ ∈ S as defined in 3.1.

Remark 31. Note that the additional constraint Rψτ is precisely the same as the one of the pure
gravitational case.

As for the other theories, also this set of constraints does not form a first class system.
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7.5 Yang–Mills–Spinor, light-like boundary

In this section, our focus will be on studying the scenario of gravity coupled with a Yang–Mills
field and a Dirac spinor. Since the KT construction does not depend on the degeneracy of the
boundary metric, the geometric phase space, as a quotient is the same as in 4.1. However the
presentation with the structural constraints fixing the representatives is different in the two cases,
as in the previous cases. In particular, we can present the geometric phase space as the bundle

F ∂d,YMS → Ω1
en(Σ,VΣ)⊕AGYM

:: Σ × S(Σ)× S(Σ)

with fiber Ared(Σ)⊕ Ω
(0,2)
Σ,red(g) such that (24), (57) and (55) are satisfied. The symplectic form

on this space reads

ΩYMS = $ +$A +$ψ

exactly as in the non-degenerate case. On this geometric phase space we can then define the
following constraints:

LA,ψc = Lc + lψc ;

PA,ψξ = Pξ + pAξ + pψξ + pA,ψξ ;

HA,ψ
λ = Hλ + hAλ + hψλ + hA,ψλ ;

MA,ψ
µ = MA

µ +mA,ψ
µ

RA,ψτ = Rτ .

Theorem 32. Let g∂ be degenerate on Σ. Then, the set of integral functionals LA,ψc , HA,ψ
λ ,

PA,ψξ , MA,ψ
µ and RA,ψτ does not form a first class system.

Proof. In order to prove the result it is just sufficient to show that one bracket is not proportional
to any constraint (and not zero). As for the previous cases (see [CCT21; Cat+23]) we can show
that

{RA,ψτ , RA,ψτ }YMS 6= 0.

This is a consequence of the fact that, using Theorem 2 and Remark 31, it is possible to show
that

{RA,ψτ , RA,ψτ }YMS = {Rψτ , Rψτ }ψ

and the last term is not proportional to any constraint (nor zero) by the results in [Cat+23]
recalled in Section 7.4.

7.6 Yang–Mills–Higgs, light-like boundary

In this section, we will examine the case of gravity coupled with a Yang–Mills field and a Higgs
fields and their interactions. We proceed as in the previous section, using the results of the
corresponding non-degenerate Section 4.2.

The geometric phase space is defined as the bundle

F ∂d,YMH → Ω1
en(Σ,VΣ)⊕ASU(n)

Σ ⊕ Γ(Σ, En|Σ)× Γ(Σ, En̄|Σ),
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with fiber
Ared(Σ)⊕ Ω

(0,2)
Σ,red(g)⊕ Ω0,1

∂ (En|Σ)× Ω0,1
∂ (En̄|Σ).

where ω,B,Π,Π† satisfy (54), (55) (24) and (41). F ∂d,YMH is symplectic with symplectic form

ΩYMH = $ +$A +$H .

We now consider the constraints. As in the non-degenerate case we have

LH,Ac = Lc; PH,Aξ = Pξ + pAξ + pHξ + pH,Aξ ;

MH,A
µ = MA

µ +mH,A
µ ; HH,A

λ = Hλ + hAλ + hHλ + hH,Aλ

RH,Aτ = Rτ .

Remark 33. Note that, as it was for the other cases, the constraint RH,Aτ takes the very same
form of the purely gravitational one Rτ .

Theorem 34. Let g∂ be degenerate on Σ. Then, the set of integral functionals LH,Ac , PH,Aξ ,

HH,A
λ , MH,A

µ and RH,Aτ does not form a first class system.

Proof. The proof is completely analogue to the one of Theorem 32 where in this case we use that

{RH,Aτ , RH,Aτ }YMH = {Rτ , Rτ}

and the last term is not proportional to any constraint (nor zero) by the results in [CCT21]
recalled in Section 7.1.

7.7 Yukawa interaction, light-like boundary

As a third interaction in this section, we will investigate the scenario of gravity coupled with a
scalar and a spinor field and the Yukawa interaction. We proceed as in the previous sections,
using the results of the corresponding non-degenerate Section 4.3. The geometric phase space is
once again the bundle

F ∂d,Y → Ω1
en(Σ,VΣ)⊕ C∞(Σ)× S(Σ)× S(Σ)

with fiber Ared(Σ)⊕ Ω
(0,1)
Σ,red such that (19) and (55) and (57) are satisfied.

The corresponding symplectic form is again just the sum of the symplectic form of the building
blocks:

ΩY = $ +$ψ +$φ.

The constraints for the degenerate Yukawa theory are:

Lφ,ψc = Lc + lψc ; Pφ,ψξ = Pξ + pφξ + pψξ ;

Hφ,ψ
λ = Hλ + hφλ + hψλ + hφ,ψλ Rφ,ψτ = Rτ

Remark 35. Note again that the constraint Rφ,ψτ is exactly Rτ .

We are now able to give the Poisson brackets of the constraints.

Theorem 36. Let g∂ be degenerate on Σ. Then, the constraints Lφ,ψc , Pφ,ψξ , Hφ,ψ
λ and Rφ,ψτ do

not form a first class system.

Proof. The proof of Theorem 32 holds verbatim also in this case (with the appropriate substitu-
tion of indices).
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7.8 Standard model, light-like boundary

Finally in this section we describe the reduced phase space of the standard model on a light-like
boundary. We use here the same notation as in Section 5 and we refer to it for the definition of
the quantities used here. As before we consider a theory of gravity coupled to a Yang–Mills, a
Higgs scalar and a spinor fields. Then the usual structure of the standard model can be recovered
by choosing the appropriate gauge group and its representation on the various fields.

On a light-like boundary Σ, the geometric phase space is given by

F ∂d,SM → Ω1
en(Σ,VΣ)⊕AGΣ⊕Γ(Σ, (SR⊗En))⊕Γ(Σ, (S̄R⊗En))⊕Γ(Σ, SL)⊕Γ(Σ, S̄L)⊕Γ(Σ, En),

with fiber given by AΣ ⊕ Ω
(0,2)
∂,red(g)⊕ Ω

(0,1)
∂,red(En) satisfying (57), (55),(24) and (19).

The symplectic structure on F ∂d,SM is

ΩSM = $ +$A +$ψL +$ψR +$H .

On this space the KT construction leads to the following constraints:

LSMc = Lc + l
ψL/R
c ,

PSMξ = Pξ + pAξ + p
ψL/R
ξ + pHξ + p

A,ψL/R
ξ + pH,Aξ ,

MSM
µ = MA

µ +mH,A
µ +m

A,ψL/R
µ ,

HSM
λ = Hλ + hAλ + h

ψL/R
λ + hHλ + h

A,ψL/R
λ + hH,Aλ + h

H,ψL/R
λ

RSMτ = Rτ

Theorem 37. Let g∂ be degenerate on Σ. Then, the constraints LSMc , PSMξ , HSM
λ and RSMτ

do not form a first class system.

Proof. Once again, since RSMτ = Rτ we can resort to the proof of Theorem 32 and conclude as
well that

{RSMτ , RSMτ }SM 6= 0

and it is not proportional to any other constraint.

Since these constraints are not defining a coisotropic submanifold of the geometric phase
space, in the case of a light-like boundary we cannot resort to the BFV formalism to describe
this quotient cohomologically.

A Some useful identities for BFV structures

From Theorem 4 we deduce that one of the quantities that will need to be computed is ιq0ιQ1
$f

for the various theories that we consider here. Let us now recap the expressions of ιQ1
$f for

gravity coupled to a scalar field, a Yang–Mills field and a spinor field respectively. From the
definition of Q1, ιQ1$BFV = δS1, we deduce that it only depends on the expression of S1 which
is the same for the first and the third theory. In particular the quantity ιQ1

$f was already
computed in [CCS21b, Proof of Theorem 30] from which we get:

ιQ1$ =

∫
Σ

ιQ1(eδeδω) =

∫
Σ

− [c, λen](b)δe
(a)
b (ξ†a − (ω − ω0)νc

†)− [c, λen](a)δ(ω − ω0)νc
†

− [c, λen](b)δe
(n)
b λ† + Lω0

ξ (λen)(b)δe
(a)
b (ξ†a − (ω − ω0)νc

†)

+ Lω0

ξ (λen)(a)δ(ω − ω0)νc
† + Lω0

ξ (λen)(b)δe
(n)
b λ†.
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Furthermore we get

ιQ1$φ =

∫
Σ

ιQ1

1

3!
δ(e3Π)δφ) =

∫
Σ

1

2
e2Π

(
[c, λen](a)c†a − Lω0

ξ (λen)(a)c†a

)
δφ,

ιQ1
$ψ =

∫
Σ

i
e2

4

(
ψγδψ − δψγψ

) (
[c, λen](a)c†a − Lω0

ξ (λen)(a)c†a

)
and

ιQ1
$A =

∫
Σ

Tr
[
δρ
(

[c, λen](a)µ†a − Lω0

ξ (λen)(a)µ†a

)]
.

Since [c, λen](a) = λ[c, en](a) and Lω0

ξ (λen)(a) = Lω0

ξ (λ)e
(a)
n − λLω0

ξ (en)(a) = −λLω0

ξ (en)(a), it is
straightforward to check that ιQ1

$, ιQ1
$φ, ιQ1

$A and ιQ1
$ψ are all proportional to λ.

B Hamiltonian vector fields

In this section we list the Hamiltonian vector fields of the constraints computed in [CCS21b;
CCF22]. We list the expressions of L, lψ, MA, P, pφ, pA, pψ, H, hφ, hA and hψ satisfying

ιL$ = δLc, ιL$φ + ιlφ($ +$φ) = δlφc ,

ιL$A + ιlA($ +$A) = δlAc , ιL$ψ + ιlψ ($ +$ψ) = δlψc ,

ιMA($ +$A) = δMA
µ

ιP$ = δPξ, ιP$φ + ιpφ($ +$φ) = δpφξ ,

ιP$A + ιpA($ +$A) = δpAξ , ιP$ψ + ιpψ ($ +$ψ) = δpψξ ,

ιH$ = δHλ, ιH$φ + ιhφ($ +$φ) = δhφλ,

ιH$A + ιhA($ +$A) = δhAλ , ιH$ψ + ιhψ ($ +$ψ) = δhψλ .

Note that we have lφc = lAc = 0. We express the vector fields in components, i.e. X = Xφ δ
δφ . We

start with the vaccum ones.

Le = [c, e] Lω = dωc+ VL
Pe = −Lω0

ξ e Pω = −Lω0

ξ (ω − ω0)− ιξFω0
+ VP

He = dω(λen) + λσ eHω = λenFω +
1

2
Λλene

2

where VL,VP ,Hω ∈ ker(W
∂,(1,2)
1 ) are such that the vector fields L, P and H are tangent to the

structural constraint (8) (see [CCS21b, Remark 26]).
Let us now list the ones related to the scalar field theory:

lφe = 0 lφω = Vlφ

lφΠ = [c,Π] + Wlφ lφφ = 0

pφe = 0 pφω = Vpφ

pφΠ = −Lω0

ξ Π + Wpφ pφφ = −Lξφ

hφe = 0 hφω = λen

(
eΠdφ+

1

4
e2(Π,Π)

)
− λ

2
e2Π(Π, en) + Vhφ

1

3!
e3hφΠ =

1

2
λenedω(eΠ) hφφ = (λen,Π).
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where Vlφ , Vpφ , Vhφ Wlφ , Wpφ , and hφΠ are such that the vector fields L + lφ, P + pφ and H + hφ

are tangent to the structural constraints (8) and (19).
Let us now list the ones related to the Yang–Mills theory:

lAe = 0 lAω = VlA

lAB = [c,B] + WlA lAA = 0

MAe = 0 MAω = VMA

e2MAB = [µ, e2B] MAA = dAµ

pAe = 0 pAω = VpA

pAB = −LA0+ω0

ξ B + WpA pAA = −LA0

ξ (A−A0)− ιξ(FA0)

hAe = 0 ehAω = λenTr(BFA) +
1

4
λene

2Tr(B,B)− λeTr(B(B, ene)) + VhA

e2hAB = 2λenedA+ωB e2hAA = 2λeneFA +
2

3!
(λene

3, B).

where VlA , VMA , VpA , VhA WlA , MAB , WpA , and hAB are such that the vector fields L + lA, MA

P + pA and H + hA are tangent to the structural constraints (8) and (24).
Finally here are the Hamiltonian vector field in presence of a spinor field:

lψe = 0 lψω = Vlψ

lψψ = [c, ψ] lψ
ψ

= [c, ψ]

pψe = 0 pψω = Vpψ

pψψ = −Lω0

ξ ψ pψ
ψ

= −Lω0

ξ ψ

hψe = −λ(σ − σ̃) ehψω = i
λen
4
e(ψγdωψ − dωψγψ)

e3

3!
γhψψ =

λen
2
e2γdωψ +

λe2en
4

(σ̃ − 2σ)γψ
e3

3!
hψ
ψ
γ =

λen
2
e2dωψγ −

λe2en
4

ψγ(σ̃ − 2σ)

where Vlψ , Vpψ and hψω are such that the vector fields L + lψ, P + pψ and H + hψ are tangent
to the structural constraints (33).

Let us also summarize here the Hamiltonian vector fields of the constraints Rτ and rψτ . These
were computed in [CCT21] and [Cat+23] respectively. The Hamiltonian vector fields of Rτ are
given by

eRe = [e, τ ] eRω = g(τ, e, ω) + dωτ.

where g = g(τ, e, ω) is a form arising from the variation of τ along e. The Hamiltonian vector
fields of Rψτ are given by

erψe = 0 erψω = 0

erψψ = 3[τ, ψ] erψ
ψ̄

= 3[τ, ψ̄].

C Definition of some maps and spaces

One of the main differences between the degenerate and the non-degenerate case is given by the
structural constraint of the geometric phase space of gravity and in the presence of an additional
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constraint. In order to understand why this happens and the objects involved, we need to define
some maps and some spaces.

Definition 38. Let e ∈ Ωen(Σ,V). Then, we define the following map:

W
∂,(i,j)
1 : Ωi,j∂ −→ Ωi+1,j+1

∂

α 7−→ e ∧ α.

Lemma 39. Let g∂ be non-degenerate. Then, for α ∈ Ω2,1
∂ α = 0 if and only if

enα ∈ ImW
∂,(1,1)
1 (58)

and
eα = 0.

For a proof we refer to [CCS21b, Lemma 13].
If we apply this lemma to α = dωe, (58) becomes the structural constraint (8) and guarantees

the equivalence between the equation dωe = 0 and the one generated by the constraint Lc,
edωe = 0. Furthermore it has been proved that this structural constraint is exactly what is
needed for F ∂ to be a symplectic space with symplectic form $ ([CCS21b, Theorem 17]).

In the degenerate case the results of Lemma 39 are no longer true and need to be adapted.
In order to do so, we must define some maps and spaces.

Definition 40. Let e ∈ Ωen(Σ,V). Then, we define the following maps:

%(i,j) : Ωi,j∂ −→ Ωi+1,j−1
∂

α 7−→ [e, α]

%̃(i,j) : Ωi,j∂ −→ Ωi+1,j−1
∂

α 7−→ [ẽ, α],

with ẽ ∈ Ω̃1,1
∂ such that ẽ∗η = 0.12 Furthermore, let J be a complement13 in Ω2,1

∂ of the space
Im %(1,2)|

KerW
∂,(1,2)
1

. Then, we define the following subspaces:

T := KerW
∂(2,1)
1 ∩ J ⊂ Ω2,1

∂

S := KerW
∂,(1,3)
1 ∩Ker%̃(1,3) ⊂ Ω1,3

∂

K := KerW
∂,(1,2)
1 ∩Ker%(1,2) ⊂ Ω1,2

∂ .

Remark 41. It is worth noting that in the non-degenerate case, the subspaces T , S, and K
defined above are all trivial. This observation allows us to consider the approach used in the
degenerate case as a generalization of the methodology employed in the non-degenerate scenario.

For a degenerate boundary metric, the result corresponding to Lemma 39 is as follows.

12Note that such ẽ exists only for degenerate boundary metrics.
13To obtain an explicit expression for the complement, one can follow these steps. Start by selecting an arbitrary

Riemannian metric on the boundary manifold Σ and extend it to the space Ω2,1. Then, the orthogonal complement

of the image of the map %(1,2)|KerW
∂,(1,2)
1 in Ω2,1

∂ can be identified as the space J , with respect to the chosen
Riemannian metric.
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Lemma 42. Let ι∗g be degenerate and α ∈ Ω2,1
∂ . Then, we have that

α = 0

if and only if

en(α− pT α) ∈ ImW
Σ,(1,1)
1 (59)

pT α = 0 (60)

eα = 0,

where pT is the projector onto T .

When we apply this lemma to α = dωe we call the condition (59) the degenerate structural
constraint and the condition (60) the degeneracy constraint. This last constraint can be rewritten
using the following equivalence

pT α = 0 ⇐⇒
∫

Σ

τα = 0 ∀τ ∈ S,

where we observe the presence of the integral condition on the right-hand side, which is subse-
quently treated as an additional constraint of the theory and called Rτ .

Since (59) is weaker than (58), in order to still get a symplectic space we need an additional
condition given by the following Lemma.

Lemma 43. Let ι∗g be degenerate. Then, given ω ∈ Ω1,2
∂ , the conditionsen(dωe− pT (dωe)) ∈ ImW

Σ,(1,1)
1

pKω = 0
(61)

uniquely define a representative of the equivalence class [ω]e, where ω ∼ ω′ if ω = ω′ + v with
ev = 0.

Strictly speaking, on a light-like boundary, the combination of the structural and degeneracy
constraints, along with the additional equation pKω = 0, is required to ensure the equivalence
between dωe = 0 and edωe = 0 on the boundary and to uniquely determine the representative of
the equivalence class [ω]e. Specifically, the structural constraint, along with the constraint Rτ ,
guarantees the aforementioned equivalence condition, whereas the structural constraint, together
with pKω = 0, ensures the uniqueness of the representatives. For further details on this discussion
we refer to [CCT21] and [Cat+23].
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