Homework 1

- 1. Give an example of a continuous onto and 1-to-1 map which is not a homeomorphism.
- 2. (a) Show that the collection of sets (a, ∞) , $[a, \infty)$, $a \in \mathbb{R}$, \mathbb{R} , and \emptyset is a topology on \mathbb{R} .
 - (b) Show that a function $f : \mathbb{R} \to \mathbb{R}$ is continuous with respect to this topology if and only if f is increasing (i.e., $x \ge y \Rightarrow f(x) \ge f(y)$).
- 3. (a) Write explicitly a homeomorphism between the unit square $[0, 1] \times [0, 1]$ and the unit disk $\{(x, y) : x^2 + y^2 \le 1\}$.
 - (b) Show that any closed convex polygon is homeomorphic to the unit disk.
- 4. In this problem you give a topological proof of the fact that there are infinitely many primes (an integer is called *prime* if it is divisible only by itself and 1).
 - (a) Consider all arithmetic progressions

$$S_{a,b} = a + b\mathbb{Z}, \quad a \in \mathbb{Z}, \ b \in \mathbb{Z}_{>0}.$$

Show that these sets form a base.

- (b) Define topology on \mathbb{Z} by this base. Show that each of the sets $S_{a,b}$ is open and closed.
- (c) Show that the set $\{\pm 1\}$ is closed.
- (d) Show that if there are only finitely many primes, then the set $\{\pm 1\}$ is open. Since this is not the case, there are infinitely many primes!
- 5. (a) Cut the Möbius strip along the middle. What object would you get?
 - (b) Cut the Möbius strip along the line which is 1/3 of the width from the edge. What object would you get?
- 6. Show that [0, 1) and [0, 1] are not homeomorphic, but $[0, 1) \times [0, 1)$ and $[0, 1] \times [0, 1)$ are homeomorphic.