Homework 4

- 1. Show that cylinder $S^1 \times \mathbb{R}$ with one point removed and torus \mathbb{T}^2 with one point removed are homotopy equivalent. Compute the fundamental group of these spaces.
- 2. (a) Find all covering spaces of degree 2 (i.e., such that every point has exactly 2 preimages) of the figure ∞ .
 - (b) How many subgroup of index 2 does the free group F_2 have?
- (a) Let X be a finite connected graph (i.e., 1-dimensional cell complex) with v vertices and e edges. Compute the fundamental group of X.
 - (b) Using the theory of covering spaces, show that a subgroup of index m in the free group F_r is free of finite rank and compute its rank.
- 4. Let F'_2 be the commutant subgroup of F_2 , i.e.,

$$F_2' = \langle [x, y] : x, y \in F_2 \rangle$$
 .

- (a) Construct the covering space of the figure ∞ that corresponds to this subgroup.
- (b) Show that F'_2 is a free subgroup of infinite rank and write explicitly its free generating set.
- 5. Show the boundary ∂M of the Möbius band M is not a retract of M. (Hint: compute the map of the fundamental groups that corresponds to the map $\partial M \to M$.)