Homework 2

- 1. Find a topological space and a compact subset whose closure is not compact.
- 2. A topological space (X, τ) is called *locally compact* if every point is contained in an open set with compact closure. Suppose that X is a Hausdorff locally compact space. We define the *one-point compactification* of X:
 - $$\begin{split} \tilde{X} &= X \cup \{\infty\}, \\ \tilde{\tau} &= \{U : U \text{ is open in } X\} \cup \{(X C) \cup \{\infty\} : C \text{ is compact in } X\}. \end{split}$$
 - (a) Check that $(\tilde{X}, \tilde{\tau})$ is a topological space.
 - (b) Prove that $(\tilde{X}, \tilde{\tau})$ is compact and Hausdorff.
 - (c) Prove that the one-point compactification of the plane is homeomorphic to the 2-dimensional sphere.
 - (d) Prove that if X and Y are homeomorphic, then their one-point compactifications are homeomorphic too.
- 3. Show that a topological space X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) : x \in X\}$ is closed in $X \times X$.
- 4. Show that [0, 1) and [0, 1] are not homeomorphic, but $[0, 1) \times [0, 1)$ and $[0, 1] \times [0, 1)$ are homeomorphic.
- 5. Prove or give a counterexample:
 - (a) If a topological space X is connected, and every point is contained in an open path-connected set, then X is path-connected.
 - (b) If f is 1-to-1 continuous map, then preimage of a compact set is compact.