Homework 4

- 1. Prove that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for n > 2.
- 2. We say that a topological space X has the fixed-point property if every continuous function $f : X \to X$ has a fixed point. Which of the following spaces have the fixed-point property?
 - the sphere S^n ,
 - the square $[0, 1] \times [0, 1]$,
 - the open unit ball in \mathbb{R}^n ,
 - the letter T.
- 3. Let M be the Möbius band and let ∂M be the boundary of M.
 - (a) Consider the maps $f_0, f_1 : S^1 \to M$ such that $f_0(t)$ makes the complete loop along ∂M and $f_1(t)$ makes the complete loop along the circle that cuts M in the middle. Prove that f_0 is not homotopic to f_1 .
 - (b) Prove that there is no continuous map $f: M \to \partial M$ that leaves all points on ∂M fixed.
- 4. Consider a map $f: S^1 \to S^1$. We take a point $x_0 \in S^1$ and choose the simple loops α and β with the same orientation that generate $\pi_1(S^1, x_0)$ and $\pi_1(S^1, f(x_0))$ respectively. Then

$$[f \circ \alpha] = [\beta]^n \text{ in } \pi_1(S^1, f(x_0))$$

for some integer n. This integer is called the *degree* of the map f.

- (a) Show that $\deg(f)$ is independent of the choice of x_0 .
- (b) Show that for $f, g: S^1 \to S^1$, $\deg(f \circ g) = \deg(f) \deg(g)$.
- (c) Show that $f, g: S^1 \to S^1$ are homotopic if and only if $\deg(f) = \deg(g)$.
- (d) Every map $f: S^1 \to S^1$ with $\deg(f) \neq 1$ has a fixed point.
- 5. (a) Find all covering spaces of degree 2 (i.e., such that every point has exactly 2 preimages) of the figure ∞ .
 - (b) How many subgroup of index 2 does the free group F_2 have?
 - (c) Match the subgroups in (b) with the covering spaces in (a).