Homework 5

- 1. Describe the simply connected covering spaces and the corresponding covering maps for
 - the torus \mathbb{T}^2 ,
 - the Klein bottle,
 - the projective space $\mathbb{R}P^n$, $n \ge 1$,
 - $\mathbb{R}^n \setminus \{0\}, n \ge 2.$
- 2. Compute the fundamental group of the projective space $\mathbb{R}P^n$, $n \geq 1$.
- 3. Show that the fundamental group of the Klein bottle is not abelian and it contains a subgroup of index 2 isomorphic to \mathbb{Z}^2 .
- 4. Using the theory of covering spaces, show that a subgroup of finite index m in the free group of finite rank r is free of finite rank and compute its rank in terms of m and r.
- 5. Let F_2 be the commutant subgroup of the free group F_2 , i.e.,

$$F'_2 = \langle [x, y] : x, y \in F_2 \rangle$$
 where $[x, y] = x^{-1}y^{-1}xy$.

- (a) Construct the covering space of the figure ∞ that corresponds to this subgroup.
- (b) Show that F'_2 is a free subgroup of infinite rank and write explicitly its free generating set.