Homework 8

1. Calculate the homology groups of a triangulation of the sphere S^{2} with k holes.
2. Construct a 3-dimensional simplicial complex from n tetrahedra (3simplices) T_{1}, \ldots, T_{n} by the following two steps. First arrange the tetrahedra in a cyclic pattern as in the figure, so that each T_{i} shares a common vertical face with its two neighbors T_{i-1} and T_{i+1} (where subscripts are interpreted modulo n). Then identify the bottom face of T_{i} with the top face of T_{i+1} for each i (again, subscripts are interpreted modulo n). Show that the simplicial homology groups of X in dimensions $0,1,2,3$ are $\mathbb{Z}, \mathbb{Z} / n, 0, \mathbb{Z}$ respectively. (This space is an example of a lens space.)

3. (weak Perron-Frobeneous theorem) Let A be a nondegenerate $(n \times n)$ matrix with nonnegative entries. Using the Brouwer theorem, prove that A has a positive eigenvalue with eigenvector whose coordinates are nonnegative.
4. Let K and L be finite simplicial complexes. By triangulating $|K| \times|L|$ appropriately, show that

$$
\chi(|K| \times|L|)=\chi(|K|) \cdot \chi(|L|)
$$

