Homework set 1 (due Wed., April 5)

1. (a) We define the complex projective space \mathbb{CP}^n as the set of equivalence classes of nonzero vectors in \mathbb{C}^{n+1} with the equivalence relation

 $v \sim w \Leftrightarrow w = \lambda v \text{ for } \lambda \in \mathbb{C} - \{0\}.$

Equip \mathbb{CP}^n with a structure of smooth manifold.

- (b) Prove that \mathbb{CP}^1 is diffeomorphic to the sphere S^2 .
- 2. (a) Let M and N be smooth manifolds and $f : M \to N$ a local diffeomorphism. Prove that if f is one-to-one, then f is a diffeomorphism between M and an open subset of N.
 - (b) Construct a local diffeomorphism $f : \mathbb{R}^2 \to \mathbb{R}^2$ which is not a diffeomorphism onto its image.
 - (c) Show that any local diffeomorphism $f : \mathbb{R} \to \mathbb{R}$ is a diffeomorphism onto its image.
- 3. Construct a submersion $\phi: S^{2n+1} \to \mathbb{CP}^n$ such that for every $x \in \mathbb{CP}^n$, the fiber $\phi^{-1}(x)$ is diffeomorphic to the circle S^1 .
- 4. Consider the map $f : \mathbb{RP}^n \times \mathbb{RP}^m \to \mathbb{RP}^{nm+n+m}$ defined by

 $([x_i: i = 0, \dots, n], [y_j: j = 0, \dots, m]) \mapsto [x_i y_j: i = 0, \dots, n, j = 0, \dots, m].$

Show that the map f is an embedding.