Homework set 2 (due Wed., April 12)

- 1. Prove that the following sets of $n \times n$ real matrices are submanifolds of \mathbb{R}^{n^2} and determine their dimensions:
 - (a) $\operatorname{SL}(n, \mathbb{R}) = \{X : \det X = 1\},\$
 - (b) $O(n, \mathbb{R}) = \{X : {}^{t}X \cdot X = E\}.$
- 2. Show that the set of $n \times n$ real matrices of rank n-1 is a submanifold of \mathbb{R}^{n^2} . What is its dimension?
- 3. (a) Let M be a smooth manifold and N its *closed* submanifold. Prove that for any smooth function $f: N \to \mathbb{R}$ has a smooth extension, that is, there exists a smooth function $F: M \to \mathbb{R}$ such that $F|_N = f$.
 - (b) Show that without the assumption that N is closed, the previous claim is false.
- 4. (a) Let M be a smooth manifold, C a closed subet of M, and $U \supset C$ an open subset of M. Prove that there exists a smooth function $f: M \to [0, 1]$ such that $f|_C = 0$ and $f|_{M \setminus U} = 1$.
 - (b) A function f : M → R is called *proper* if the preimage of every compact subset of R is compact. Prove that on every smooth manifold M, there exists a smooth proper function.
 This result can useful for proving the Whitney Embedding Theorem for noncompact manifolds.