Homework set 3 (due Wed., April 19)

1. (a) Let $f: M \to M$ be a smooth map. Prove that the submanifolds

$$\Delta = \{(x, x) : x \in M\} \text{ and } \Gamma = \{(x, f(x)) : x \in M\}$$

of $M \times M$ are transversal if and only if $(df)_x$ doesn't have eigenvalue 1 for all fixed points x of f.

- (b) Let M be a compact manifold and $f : M \to M$ a smooth map such that $(df)_x, x \in M$, don't have eigenvalue 1. Prove that f has only finitely many fixed points.
- 2. Prove or disprove that the following properties are stable:
 - (a) injective,
 - (b) surjective,
 - (c) diffeomorphism (consider both compact and noncompact cases).
- 3. Construct a vector field on a sphere of any dimension that has exactly one zero.
- 4. Let $f: M \to N$ be surjective submersion. A smooth function $g: M \to \mathbb{R}$ factors through f if there exists a smooth function $h: N \to \mathbb{R}$ such that $g = h \circ f$. We call a vector field X on M vertical if $(df)_p X_p = 0$ for all $p \in M$.
 - (a) Check that g factors through f if and only if g is constant on fibers $f^{-1}(q), q \in N$.
 - (b) Show that if g factors through f, then for any vertical vector field X, we have Xg = 0.
 - (c) Let $q \in N$. Prove that if Xg = 0 for any vertical vector field, then $g|_{f^{-1}(q)}$ is locally constant.
 - (d) Assuming that all fibers $f^{-1}(q)$, $q \in N$, are connected, prove the converse of (b).
 - (e) Give a counterexample to (d) if we don't assume that the fibers are connected.