Homework set 5 (due Wed., May 10)

1. Given a vector field X on a manifold M, we define the contraction map $i_X : \Lambda^k M \to \Lambda^{k-1} M$:

$$(i_X\omega)_p(v_1,\ldots,v_{k-1}) = \omega_p(X_p,v_1,\ldots,v_{k-1})$$

where $p \in M$ and $v_1, \ldots, v_{k-1} \in T_p M$.

- (a) Prove that $i_X \circ i_X = 0$.
- (b) Prove that for $\omega \in \Lambda^r M$ and $\eta \in \Lambda^s M$,

$$i_X(\omega \wedge \eta) = (i_X\omega) \wedge \eta + (-1)^r \omega \wedge (i_X\eta).$$

- 2. Prove that the tangent bundle and the cotangent bundle on a manifold are isomorphic, i.e., there exists a diffeomorphism that respects the projection maps $TM \to M$ and $T^*M \to M$ and is linear on the fibers. Hint: Use existence of a Riemannian metric.
- 3. Let M be a manifold with a Riemannian metric and $f \in C^{\infty}(M)$.
 - (a) Prove that there exists a unique a vector field $\operatorname{grad}(f)$ on M such that

$$\langle \operatorname{grad}(f)_p, X_p \rangle_p = X f(p)$$

for every $p \in M$ and every vector field X on M.

- (b) Compute $\operatorname{grad}(f)$ when M is the Euclidean space with the standard Riemannian metric.
- (c) For $p \in M$, compute

$$\max\{Xf(p): X - \text{vector field}, \|X_p\|_p = 1\}$$

in terms of $\operatorname{grad}(f)$.

4. Given a nonorientable connected manifold M, we define

$$\tilde{M} = \bigcup_{p \in M} \{ \text{orientations of } T_p M \}.$$

Show that \tilde{M} has a structure of smooth manifold such that it is connected, orientable, and the natural projection map $\pi : \tilde{M} \to M$ is a local diffeomorphism.