Homework set 5 (due Wed., May 10)

1. Given a vector field X on a manifold M, we define the contraction map $i_{X}: \Lambda^{k} M \rightarrow \Lambda^{k-1} M$:

$$
\left(i_{X} \omega\right)_{p}\left(v_{1}, \ldots, v_{k-1}\right)=\omega_{p}\left(X_{p}, v_{1}, \ldots, v_{k-1}\right)
$$

where $p \in M$ and $v_{1}, \ldots, v_{k-1} \in T_{p} M$.
(a) Prove that $i_{X} \circ i_{X}=0$.
(b) Prove that for $\omega \in \Lambda^{r} M$ and $\eta \in \Lambda^{s} M$,

$$
i_{X}(\omega \wedge \eta)=\left(i_{X} \omega\right) \wedge \eta+(-1)^{r} \omega \wedge\left(i_{X} \eta\right)
$$

2. Prove that the tangent bundle and the cotangent bundle on a manifold are isomorphic, i.e., there exists a diffeomorphism that respects the projection maps $T M \rightarrow M$ and $T^{*} M \rightarrow M$ and is linear on the fibers. Hint: Use existence of a Riemannian metric.
3. Let M be a manifold with a Riemannian metric and $f \in C^{\infty}(M)$.
(a) Prove that there exists a unique a vector field $\operatorname{grad}(f)$ on M such that

$$
\left\langle\operatorname{grad}(f)_{p}, X_{p}\right\rangle_{p}=X f(p)
$$

for every $p \in M$ and every vector field X on M.
(b) Compute $\operatorname{grad}(f)$ when M is the Euclidean space with the standard Riemannian metric.
(c) For $p \in M$, compute

$$
\max \left\{X f(p): X-\text { vector field, }\left\|X_{p}\right\|_{p}=1\right\}
$$

in terms of $\operatorname{grad}(f)$.
4. Given a nonorientable connected manifold M, we define

$$
\tilde{M}=\bigcup_{p \in M}\left\{\text { orientations of } T_{p} M\right\} .
$$

Show that \tilde{M} has a structure of smooth manifold such that it is connected, orientable, and the natural projection map $\pi: \tilde{M} \rightarrow M$ is a local diffeomorphism.

