Homework set 7 (due Wed., May 24)

1. Show that the wedge product defines a bilinear map

$$H^p_{dR}(M) \times H^q_{dR}(M) \to H^{p+q}_{dR}(M).$$

This map is called the cup product.

- 2. Let $M = M_1 \times M_2$ and $\pi_i : M \to M_i$ the projection map. Prove that $\pi_i^* : H^k_{dR}(M_i) \to H^k_{dR}(M)$ is injective.
- 3. Let ω be a closed 1-form on a compact manifold M. We define a mapping $F_{\omega} : \pi_1(M, b) \to \mathbb{R}$ by the following method. Let $f : [0, 1] \to M$ be a piecewise C^1 loop S at b and denote by [f] the corresponding element of $\pi_1(M, b)$. We define $F_{\omega}([f]) = \int_S \omega$.
 - (a) Show that F_{ω} is a well-defined homomorphism whose kernel contains the commutator subgroup of $\pi_1(M, b)$.
 - (b) Show that F_{ω} defines an injective homomorphism

$$H^1_{dR}(M) \to \pi_1(M,b)^*$$

where $\pi_1(M, b)^*$ denotes the group of characters $\chi : \pi_1(M, b) \to \mathbb{R}$.

- 4. Prove that $H^1_{dR}(\mathbb{T}^n) = \mathbb{R}^n$ and deduce that the torus \mathbb{T}^n is not homotopy equivalent to the sphere S^n for n > 1.
- 5. Given a compact oriented submanifold Z without boundary of dimension k, consider a map

$$\int_Z : \omega \mapsto \int_Z \omega$$

defined on the space of k-forms.

- (a) Show that \int_{Z} defines a linear functional on $H^{k}_{dR}(M)$.
- (b) Show that if Z is the boundary of some compact orientable (k+1)-dimensional submanifold, then $\int_{Z} = 0$ on $H^{k}_{dR}(M)$.
- (c) Two compact submanifolds Z_0 and Z_1 are called *cobordant* if there exists a compact submanifold W in $M \times [0, 1]$ such that

$$\partial W = Z_0 \times \{0\} \cup Z_1 \times \{1\}$$

Prove that if Z_1 and Z_2 are cobordant, then $\int_{Z_1} = \int_{Z_2}$ on $H^k_{dR}(M)$.