Homework set 2 (due Wed., Feb. 1)

1. Let $f, g : M \to M$ be isometries of a Riemannian manifold M such that for some $p \in M$,

$$f(p) = g(p)$$
 and $(df)_p = (dg)_p$.

Prove that f = g (Hint: use the *M* is connected and the exponential map).

- 2. A Riemannian manifold M is called *homogeneous* if the group of isometries acts transitively on M. Prove that on a homogeneous Riemannian manifold, every geodesic is defined on $(-\infty, +\infty)$ (i.e., the manifold is geodesically complete).
- 3. Two metrics g_1 and g_2 on a Riemannian manifold M are called *conformal* if $g_2 = f^2 g_1$ for $f \in C^{\infty}(M)$, $f \neq 0$. In this problem, you prove that given any Riemannian metric g, there exists a complete Riemannian metric \overline{g} conformal to g. In particular, any smooth manifold supports a complete Riemannian metric.

We assume that (M, g) is not complete and set

$$B_r^g(p) = \{q \in M : d_g(p,q) \le r\},\$$

$$r(p) = \sup\{r > 0 : \overline{B}_r^g(p) \text{ is compact}\}.$$

- (a) Prove that $0 < r < \infty$ and $|r(p) r(q)| \le d_g(p,q)$.
- (b) Prove that there exists $f \in C^{\infty}(M)$ such that f > 1/r.
- (c) Set $\bar{g} = f^2 g$ and prove that $\bar{B}^{\bar{g}}_{1/4}(p) \subset \bar{B}^{g}_{r(p)/2}(p)$ for every $p \in M$.
- (d) Prove that (M, \bar{g}) is complete