Homework set 3 (due Wed., Feb. 15)

1. Compute the isometry groups:

$$\begin{aligned} \operatorname{Isom}(\mathbb{R}^n) &= \operatorname{O}(n) \ltimes \mathbb{R}^n, \\ \operatorname{Isom}(S^n) &= \operatorname{O}(n+1), \\ \operatorname{Isom}(\mathbb{H}^2) &= \mathbb{Z}/2 \ltimes \operatorname{SL}(2,\mathbb{R})/\langle \pm 1 \rangle, \end{aligned}$$

where S^n is the unit sphere with the metric induces from \mathbb{R}^{n+1} and \mathbb{H}^2 is the hyperbolic plane $\{x + iy : y > 0\}$ with the metric $\frac{dx^2 + dy^2}{y^2}$.

Hint: use HW2, Problem 1; for \mathbb{H}^2 , use fractional linear transformations $z \mapsto \frac{az+b}{cz+d}$.

- (a) Given a covering map π : M̃ → M of smooth manifolds and a Riemannian metric on M̃, can one define a Riemannian metric on M such that π is an isometry? What about ℝ^d → ℝ^d/Λ, Λ a lattice in ℝ^d? (The Riemannian manifolds ℝ^d/Λ are called flat tori.)
 - (b) Show that the isometry group of a flat torus is finite.
- 3. Prove that for $v, w \in T_pM$,

$$d(\exp_n(tv), \exp_n(tw)) = t ||v - w|| + O(t^2)$$
 as $t \to 0$.

4. Compute the curvature tensor for the Riemannian manifolds

$$M_{\kappa} = \{ x \in \mathbb{R}^d : \langle x, x \rangle \neq -\kappa^{-1} \}, \quad g_p(u, v) = \frac{4 \langle u, v \rangle}{(1 + \kappa \langle p, p \rangle)^2},$$

where $\langle \cdot, \cdot \rangle$ is the standard Euclidean metric and $\kappa \neq 0$.

- 5. (do Carmo: Ch. 4, Problem 4) Let M be a Riemannian manifold such that for every $p, q \in M$, the parallel transport from p to q does not depend on the curve that joins p and q. Prove that the curvature tensor is identically zero.
- 6. (do Carmo: Ch.5, Problem 1) Let M be a Riemannian manifold with sectional curvature identically zero. Prove that for sufficiently small $\epsilon > 0$, the map $\exp_p |_{B_{\epsilon}(0)}$ is an isometry.