Homework problems

- 1. Let M be a complete simply connected Riemannian manifold of constant sectional curvature.
 - (a) Show that the isometry group of M acts transitively on the set

$$\{(x,y) \in M \times M : d(x,y) = r\}.$$

(b) Prove that

$$Isom(S^n) = O(n+1),$$

$$Isom(\mathbb{R}^n) = O(n) \ltimes \mathbb{R}^n,$$

$$Isom(\mathbb{H}^2) = \mathbb{Z}/2 \ltimes PSL(2, \mathbb{R}).$$

- (c) Show that the subgroup of the isometry group of a flat torus that fixes a point is finite.
- Let M be orientable (or nonorientable) surface of negative Euler characteristic. Show that M support a metric of constant negative curvature. (See [GHL], Sec. 3L)
- 3. Prove that Klein bottle supports metric of zero sectional curvature.
- 4. Compute the cut locus of the Klein bottle with this flat metric and the cut locus on the torus $\mathbb{R}^n/\mathbb{Z}^n$.
- 5. Give an example of totally discontinuous group Γ of affine transformations of \mathbb{R}^n . Such that \mathbb{R}^n/Γ is compact and Γ is not virtually abelian.
- 6. Let M be a complete simply connected Riemannian manifold and Γ a subgroup of Isom(M) acting totally discontinuously on M.
 - (a) Using cut locus, construct an open star-shaped fundamental domain for the action of Γ on M.
 - (b) If M has nonpositive sectional curvature, show that this construction is the same as the Dirichlet fundamental domain.
- 7. Let M and N be complete Riemannian manifolds, $m \in M$ and $n \in N$. Show that the cut locus of (m, n) in the Riemannian product $M \times N$ is

$$(C_m \times N) \cup (M \times C_n)$$

where C_m and C_n are the cut loci for m and n respectively.

Definition. Action of a group Γ on a locally compact topological space X is called *properly discontinuous* if for every compact $E, F \subset X$, the set

$$\{\gamma \in \Gamma : \gamma \cdot E \cap F \neq \emptyset\}$$

is finite. Action is called *free* if

$$\gamma \cdot x = x \ \Rightarrow \gamma = e.$$

- 8. (a) Show that an action is totally discontinuous if it is free and properly discontinuous. If the action is isometric and totally discontinuous, then it is properly discontinuous.
 - (b) Show that for a properly discontinuous action, every orbit is discrete and construct example of a free action such that every orbit is discrete, but the action is not properly discontinuous. (Hint: consider the action: $(x, y) \mapsto (2x, y/2)$.)
- 9. (a) Show that for an *isometric* action, if the sets $\{\gamma : \gamma \cdot x = x\}$ are finite and all orbits are discrete, then the action is properly discontinuous.
 - (b) Show that if Γ is a properly discontinuous subgroup affine isometries of \mathbb{R}^n , then it is totally discontinuous iff it is torsion free.
- 10. Let M be compact Riemannian manifold and $\pi : \tilde{M} \to M$ is its universal cover. Denote by B(p, R) the ball of radius R in \tilde{M} . Prove that the function $R \mapsto \operatorname{Vol}(B(p, R))$ grows at most exponentially and

$$\limsup_{R \to \infty} \frac{\log \operatorname{Vol}(B(p, R))}{R}$$

is independent of p.

11. (a) Let Γ be a subgroup of isometries of a metric space (M, d) acting totally discontinuously and M/Γ is compact. Show that

$$\inf\{d(x,\gamma\cdot x): x\in X, \gamma\in\Gamma-\{e\}\}>0.$$

(b) Consider $\gamma = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, $k \neq 0$, as an element of the isometry group of \mathbb{H}^2 . Show that $\langle \gamma \rangle$ acts totally discontinuously on \mathbb{H}^2 but

$$\inf\{d(x,\gamma\cdot x): x\in\mathbb{H}^2\}=0.$$

- 12. (a) Compute the Busemann function for \mathbb{R}^n .
 - (b) Is it possible to define the baricenter map for \mathbb{R}^n ?

In Problem 13-15, we use the unit ball model of \mathbb{H}^n .

13. (a) Show that the integral

$$\int_{\mathbb{H}^n} e^{-sd(x,y)} dv(y),$$

where v denotes the Riemannian volume on \mathbb{H}^n , converges for s > n-1 and diverges for $s \le n-1$.

(b) For s > n - 1, consider the measures

$$\nu_{x,s}(f) = \frac{\int_{\mathbb{H}^n} e^{-sd(x,y)} f(y) dv(y)}{\int_{\mathbb{H}^n} e^{-sd(0,y)} dv(y)}, \quad f \in C(\overline{\mathbb{H}^n}).$$

Prove that as $s \to (n-1)^+$, the measure $\nu_{0,s}$ converges in weak* topology to the (normalized) standard measure $d\theta$ on the sphere $S^{n-1} = \partial \mathbb{H}^n$ (Hint: use invariance properties of the measures).

14. (a) Let ν_x be a weak* limit point of $\nu_{x,s}$ as $s \to (n-1)^+$. Check that for every $g \in \text{Isom}(\mathbb{H}^n)$,

$$g_*\nu_x = \nu_{gx}.$$

More precisely, if for some sequence $s_i \to (n-1)^+$ the limit

$$\nu_x = \lim_i \nu_{x,s_i}$$

exists, then the limit

$$\nu_{gx} = \lim_{i} \nu_{gx,s_i}$$

exists too, and the above equality holds.

(b) Deduce from (b) that for every $x \in \mathbb{H}^n$, the limit

$$\lim_{s \to (n-1)^+} \nu_{x,s}$$

exists in the weak^{*} topology.

15. (a) Prove that

$$\nu_r = e^{-(n-1)B_\theta(x,0)} d\theta.$$

(b) Prove that for every $x \in \mathbb{H}^n$,

$$\operatorname{bar}(\nu_x) = x$$

Remark. One can show if Γ is totally discontinuous subgroup of Isom (\mathbb{H}^n) such that \mathbb{H}^n/Γ is compact, then the Patterson-Sullivan measures defined for Γ are the same as the measures ν_x defined above.

16. Complete the proof of the theorem that a quasi-isometry of \mathbb{H}^n extended continuously to the $\partial \mathbb{H}^n$. Namely, show that map $\partial \mathbb{H}^n \to \partial \mathbb{H}^n$ defined in class is continuous.