Homework problem set

- (1) Recall that we have shown that $GL_d(\mathbb{R}) = \sum_{t,v} GL_d(\mathbb{Z})$ for $t \geq \frac{2}{\sqrt{3}}$ and $v \geq \frac{1}{2}$ where $\sum_{t,v}$ denotes the Siegel set. Is this true for smaller values of the parameters t and v?
- (2) Let $Q(x) = \sum_{i,j=1}^{d} a_{ij} x_i x_j$ be a non-degenerate quadratic form with real coefficients.
 - (a) Show that the group $O(Q)(\mathbb{R})$ is compact if and only the equation Q(x) = 0 has no nonzero solutions over \mathbb{R} .
 - (b) When $d \geq 3$, prove that in this case $O(Q)(\mathbb{R})$ contains a copy of $PGL_2(\mathbb{R})$.
- (3) Let Q be a non-degenerate indefinite quadratic form with integral coefficients such that the equation Q(x) = 0 has a nonzero solution over \mathbb{Z} .
 - (a) Show that the set

$$\{x \in \mathbb{Z}^d : Q(x) = 0\}$$

is not a finite union of orbits of $O(Q)(\mathbb{Z})$.

- (b) Why doesn't the theorem from Lecture 3 apply here?
- (4) Let $Q(x, y) = ax^2 + bxy + cy^2$ be a quadratic form with integral coefficients such that $b^2 4ac < 0$.
 - (a) Show that if the equation Q(x, y) = 0 has a nonzero rational solution, then the group $O(Q)(\mathbb{Z})$ is finite.
 - (b) Show that if the equation Q(x, y) = 0 has no nonzero rational solutions, then the factor space $O(Q)(\mathbb{R})/O(Q)(\mathbb{Z})$ is compact (hint: Pell's equation...).
- (5) Let $\Gamma = \operatorname{SL}_d(\mathbb{Z})$ and $\Gamma(n)$ be the congruence subgroup of level n. Compute the cardinality of the factor space $\Gamma/\Gamma(n)$.
- (6) Let $\Gamma(n)$ be the congruence subgroup of level n in $\mathrm{SL}_d(\mathbb{Z})$, and let p be an odd prime.
 - (a) Show that $\Gamma(p)/\Gamma(p^k)$ is a *p*-group.
 - (b) Prove that the group $\Gamma(p)$ does not have elements of finite order.
- (7) Let K be a field. Show that every element of $SL_d(K)$ can be written as a product of at most d(d-1) elementary matrices.
- (8) Show that every finitely generated nilpotent group has the bounded generation property.
- (9) Show that a non-abelean free group does not have the bounded generation property.
- (10) (a) Let $\rho : \Gamma \to U(\mathcal{H})$ be a unitary representation of a group Γ . Let $S \subset \Gamma$ and $\epsilon > 0$. Show that every (S, ϵ) -invariant vector is $((S \cup S^{-1})^n, n\epsilon)$ -invariant.

- (b) Show that a group Γ has property (T) if and only it has a Kazhdan pair (S, ϵ) .
- (11) (a) Let Γ be a group and Γ_0 a finite index subgroup of Γ . Show that Γ has property (T) if and only if Γ_0 has property (T).
 - (b) Is it true that every subgroup of a group with property (T) also has property (T)?
- (12) Let Γ be group and Λ a normal subgroup Γ . Show that if Λ and Γ/Λ both have property (T), then Γ has property (T) too.
- (13) Consider the linear action of $\Gamma = \operatorname{SL}_d(\mathbb{Z}), d \geq 3$, on the torus $X = \mathbb{R}^d / \mathbb{Z}^d$, and the corresponding linear representation of Γ on $L^2(X)$. Prove that this representation has no almost invariant vectors.
- (14) A group Γ is called amenable if there exists a sequence of finite subset S_n of Γ such that for every $\gamma \in \Gamma$, $\frac{|\gamma S_n \Delta S_n|}{|S_n|} \to 0$ as $n \to \infty$. Show that if a group is both amenable and has property (T), then it is finite.
- (15) Let $\Gamma = \operatorname{SL}_d(\mathbb{Z})$ and $S = \{e_{ij}\}$ the generating set of Γ consisting of elementary matrices. Show that a Kazhdan constant for Sis at least $(2/n)^{1/2}$ (Hint: consider the unitary representation of Γ on $\ell^2(\mathbb{Z}^d \setminus \{0\})$ and a vector $v \in \ell^2(\mathbb{Z}^d \setminus \{0\})$ which is the characteristic function of the standard basis of \mathbb{Z}^d .)