Problem Set 1

HAND IN on FRIDAY, 6 OCTOBER during the class.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]

SET Exercises for Level 3: 1.3, 1.4 and 1.5.

SET Exercises for Level M: 1.3, 1.4, 1.5 and 1.8.
Exercise 1.1. Let $R_{\alpha}: S^{1} \rightarrow S^{1}$ where $\alpha=p / q$ and p and q are coprime.
(a) Draw an orbit of R_{α} for α for $p / q=2 / 7$ and for $p / q=5 / 8$.
(b) Prove that q is the minimal period, i.e. for each $x \in \mathbb{R} / \mathbb{Z}$ we have $R_{\alpha}^{k}(x) \neq x$ for each $1 \leq k<q ;$
(c) Prove that $|p|$ gives the winding number, i.e. the number of "turns"' that the orbit of any point does around the circle S^{1} before closing up.

Exercise 1.2. Given a dynamical system $f: X \rightarrow X$, we say that a point $x \in X$ is preperiodic if there exists $m, n \in \mathbb{N}$ such that $f^{m}(x)=f^{n}(x)$ and $m \neq n$.
(a) Show that if x is preperiodic $\mathcal{O}_{f}^{+}(x)$ contains a periodic point;
(b) Show that if f is invertible every preperiodic point is periodic;
(c) Give an example of a map $f: X \rightarrow X$ and a point which is preperiodic but not periodic.

Exercise 1.3. (SET) Let $X=[0,1) \times[0,1)$ and let $f: X \rightarrow X$ be given by

$$
f(x, y)=(x+y \quad \bmod 1, y)
$$

(a) Show that the set $\operatorname{Per}(f)$ of periodic points consists exactly of the points $(x, y) \in X$ such that y is rational.
(b) Are there points whose orbit is dense? Explain your answer.
[Here in the definition of density let d be the Euclidean distance on $[0,1] \times[0,1]$, that is

$$
\left.d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} .\right]
$$

Exercise 1.4. (SET) Let $X=[0,1] / \sim$ and let $f(x)=3 x \bmod 1$. Let $\operatorname{Per}(f)$ and $\operatorname{Per}_{n}(f)$ be respectively the set of all periodic points and all periodic points of period n.
(a) Find all the points in $\operatorname{Per}_{n}(f)$.
(b) Show that the set $\operatorname{Per}(f)$ of periodic points is dense.
(c) Show that the digits of the expansions in base 3 of points in $\operatorname{Per}(f)$ are periodic, that is if $x \in \operatorname{Per}_{n}(f)$ and

$$
x=\sum_{i=1}^{+\infty} \frac{x_{i}}{3^{i}}, \quad \Rightarrow \quad x_{i}=x_{i+n}, \forall i \in \mathbb{N} .
$$

Exercise 1.5. (SET) Let $R_{\alpha}:[0,1] / \sim \rightarrow[0,1] / \sim$ be a rotation with α irrational.
(a) Prove that for each $\epsilon>0$ there exists $n \in \mathbb{N}$ such that

$$
0 \leq(n \alpha \bmod 1) \leq \epsilon
$$

(b) Prove that there are infinitely many fractions p / q where $p \in \mathbb{Z}, q \in \mathbb{N}$ and p, q are coprime, that solve the equation

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2}}
$$

Exercise 1.6. Consider the map $\psi:[0,1] \rightarrow S^{1}$ given by

$$
\begin{equation*}
\psi(x)=e^{2 \pi i x}, \quad x \in[0,1] \tag{1}
\end{equation*}
$$

(a) Check that ϕ is well-defined on $\mathbb{R} / \mathbb{Z}=[0,1] / \sim$ and establishes a one-to-one correspondence between \mathbb{R} / \mathbb{Z} and S^{1} (that is, ψ is injective and surjective).
(b) Show that $f_{m}:[0,1] / \sim[0,1] / \sim$ given by $f_{m}(x)=m x \bmod 1$ is conjugated to the map $g_{m}: S^{1} \rightarrow S^{1}$ given by

$$
g_{m}(z)=z^{m}
$$

(c) Let d be the distance on S^{1} given by the shortest arc lenght divided by 2π. Show that

$$
d(\Psi(x), \Psi(y))=\min \{|x-y|, 1-|x-y|\}
$$

(c) Show that g_{m} expands distances in the following sense: if $d(x, y) \leq 1 / 2 m$, then

$$
d\left(g_{m}(x), g_{m}(y)\right)=\operatorname{md}(x, y)
$$

(d) Find an example of points z_{1}, z_{2} such that

$$
d\left(g_{m}\left(z_{1}\right), g_{m}\left(z_{2}\right)\right) \neq m d(x, y)
$$

* Exercise 1.7. Let $X=[0,1) \times[0,1)$ be the unit square and let d be the Euclidean distance. Consider the map

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha_{1} \quad \bmod 1, x_{2}+\alpha_{2} \quad \bmod 1\right)
$$

Assume that at least one of α_{1}, α_{2} is irrational.
(a) Write down the the $n^{\text {th }}$-term of the orbit $\mathcal{O}_{f}^{+}(\underline{x})$ of $\underline{x}=\left(x_{1}, x_{2}\right)$ under f and show that for any $\underline{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ all points in the orbit $\mathcal{O}_{f}^{+}(\underline{x})$ of \underline{x} under f are distinct.
(b) Show that for any $\underline{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and any N positive integer there exists $1 \leq n \leq N^{2}$ such that

$$
d\left(f^{n}(\underline{x}), \underline{x}\right) \leq \frac{\sqrt{2}}{N}
$$

where d is the Euclidean distance.

* Exercise 1.8. (SET for Level M)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continous invertible map, with continuous inverse.
(a) Give an example of such f that has periodic points of period two.
(b) Show that f cannot have periodic points with minimal period greater than two (that is all periodic points are either fixed points or periodic points of period two).

