Problem Set 10

HAND IN on MONDAY, December 11.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]

SET Exercises: do <u>ONE</u> of the following problems (from past year exams).

1. Consider the torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ as a measure space with the 2-dimensional Lebesgue measure λ and as a topological space with the distance d induced by the Euclidean distance.

Let $T:\mathbb{T}^2\to\mathbb{T}^2$ be the transformation given by

$$T(x,y) = (x + \alpha \mod 1, x + y \mod 1), \qquad (x,y) \in [0,1]^2.$$

One can show and you can use that T preserves λ .

- (a) (**4 marks**)
 - i. Compute $T^n(x, y)$ for n = 2, 3.
 - ii. Prove by induction that, for any $n \in \mathbb{N}$,

$$T^{n}(x,y) = \left(x + n\alpha \mod 1, y + nx + \frac{n(n-1)}{2}\alpha \mod 1\right).$$

(b) (**9 marks**)

Fix a positive integer n and $\epsilon > 0$.

- i. Define what it means for a set $S \subset \mathbb{T}^2$ to be an (n, ϵ) -spanning set for T. Include the definition of d_n .
- ii. State a formula for the topological entropy $h_{top}(T)$ in terms of the cardinality of (n, ϵ) -spanning sets.
- iii. Show that if k in an integer such that $\frac{1}{k} < \frac{\epsilon}{2}$, the set S given by

$$S = \left\{ \left(\frac{i}{nk}, \frac{j}{k}\right), \quad 0 \le i < k, 0 \le j < nk \right\}$$

is an (n, ϵ) -spanning set.

Hint: you might want to use the formula in part (a).

- iv. Conclude that $h_{top}(T) = 0$.
- (c) (**7 marks**)
 - i. State what it means for a topological dynamical system $f: X \to X$ on a metric space (X, d) to be expansive.
 - ii. Show that $T: \mathbb{T}^2 \to \mathbb{T}^2$ is not expansive.
- (d) (**5 marks**)

Let (X, d) a compact metric space and let $f : X \to X$ be a topological dynamical system. Show that if there exists an integer N > 0 such that f^N is the identity transformation, then $h_{top}(T) = 0$.

[**Hint**: Feel free to use without justifying it that, since X is compact, for any $\epsilon > 0$ and any $n \in \mathbb{N}$ there exists a finite (n, ϵ) -spanning set.]

2. Let

$$T_A(x_1, x_2) = (x_1 + 2x_2 \mod 1, 2x_1 + 3x_2 \mod 1)$$

be the toral automorphism defined by the matrix

$$A = \left(\begin{array}{rrr} 1 & 2\\ 2 & 3 \end{array}\right)$$

You can assume and use that T_A preserves the two dimensional Lebesgue measure λ on \mathbb{T}^2 .

- (a) (**9 marks**)
 - i. Let $T : X \to X$ be a measure preserving dynamical system on measure space (X, \mathscr{A}, μ) . State a sufficient condition for T to be ergodic with respect to μ involving functions in $L^2(X, \mu)$.
 - ii. Using Fourier series show that T_A is ergodic with respect to λ . Justify carefully all your arguments.

[You can use without proof that if $\underline{n} = (n_1, n_2) \in \mathbb{Z}^2$ is different than $\underline{0} = (0, 0)$, then the vectors

$$(A^T)^k \left(\begin{array}{c} n_1 \\ n_2 \end{array}\right) = \left(\begin{array}{c} 1 & 2 \\ 2 & 3 \end{array}\right)^k \left(\begin{array}{c} n_1 \\ n_2 \end{array}\right), \qquad k \in \mathbb{N}$$

are all distinct and their norms grow to infinity.]

(b) (**5 marks**)

Denote by $(x_1^{(k)}, x_2^{(k)}) = T^k(x_1, x_2)$ the points in the orbit $\mathcal{O}_T^+((x_1, x_2))$. Show that the frequency of $0 \le k < n$ such that

$$0 < x_1^{(k)} + x_2^{(k)} < 1$$

tends to 1/2 as n tends to infinity for λ -almost every $(x_1, x_2) \in \mathbb{T}^2$.

- (c) (**7 marks**)
 - i. Show that (x_1, x_2) is a periodic point of period n for T_A if and only if then there exists $(n_1, n_2) \in \mathbb{Z}^2$ such that

$$(A^n - Id) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} n_1 \\ n_2 \end{array}\right)$$

where Id denotes the identity matrix.

- ii. Show that the number of periodic points of period two is at most the number of integer points contained in the the parallelogram P which has as sides the segment from (0,0) to $(4,8) \in \mathbb{R}^2$ and the segment from (0,0) to (8,12).
- (d) (**4 marks**)

Show that, if $Card(Per_n(T_A))$ denotes the number of periodic points of period n for T_A , one has

$$\lim_{n \to +\infty} \frac{\log Card(Per_n(T_A))}{n} = \log \lambda$$

where $\lambda > 1$ is the largest eigenvalue of the matrix A. Justify your answer.

3. Let $G: [0,1] \to [0,1]$ denote the Gauss map, given by

$$G(x) = \begin{cases} 0 & \text{if } x = 0; \\ \left\{\frac{1}{x}\right\} = \frac{1}{x} \mod 1 & \text{if } 0 < x \le 1. \end{cases}$$

(a) (8 marks)

Let μ_G be the Gauss measure given by integrating the density $\frac{1}{\log 2} \left(\frac{1}{1+x} \right)$.

Recall that G preserves the Gauss measure.

- i. State what it means that $T: (X, \mathscr{A}) \to (X, \mathscr{A})$ preserves a measure μ on (X, \mathscr{A}) .
- ii. Express the preimage $G^{-1}(\frac{1}{2}, 1)$ as union of disjoint intervals.
- iii. Compute $\mu_G(G^{-1}(\frac{1}{2}, 1))$.
- (b) (6 marks)

Let $\sigma : \Sigma \to \Sigma$ be the shift map on the space $\Sigma = \mathbb{N}^{\mathbb{N}}$ of sequences $\underline{a} = (a_n)_{n \in \mathbb{N}}$ with a_i positive integers.

Let $X = [0,1) - \mathbb{Q}$ the set of irrational points in [0,1) and consider the map $\psi : \Sigma \to X$ given by

$$\psi(\underline{a}) = [a_1, a_2, \dots,] = \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

- i. State what it means that $\psi : \Sigma \to X$ is a conjugacy between a dynamical system $f: X \to X$ and $\sigma: \Sigma \to \Sigma$.
- ii. Show that ψ is a conjugacy between the Gauss map $G: X \to X$ and $\sigma: \Sigma \to \Sigma$. [You can use without proof that any irrational number $x \in [0, 1]$ admits a unique continued fraction expansion.]
- (c) (**11 marks**)

By specifying the entries of their continued fraction expansions, give examples of three points $x, y, z \in [0, 1)$ which satisfy the following properties. Justify your answers.

- i. The point x is a periodic point of period 3 for G.
- ii. The point y is non periodic and each even iterate (that is, each iterate of the form $G^{2n}(y)$ for $n \in \mathbb{N}$) belongs to the left half of the unit interval.
- iii. The orbit $\mathscr{O}_{G}^{+}(z)$ accumulates to $\frac{1}{3}$, that is there is an increasing subsequence n_{k} such that

$$\lim_{k \to \infty} G^{n_k}(z) = \frac{1}{3}.$$

4. Let $(\Sigma_N^+, \mathscr{A})$ be the 1-sided full shift space on $N \ge 2$ symbols with the σ -algebra \mathscr{A} generated by cylinder sets. Let $\underline{p} = (p_1, \ldots, p_n)$ be a probability vector and let μ be the Bernoulli measure on $(\Sigma_N^+, \mathscr{A})$, that is the unique measure such that

$$\mu\left(C_k(a_0,\ldots,a_k)\right) = p_{a_0}\ldots p_{a_k}$$

for all cylinder sets $C_k(a_0, \ldots, a_k)$.

(a) (**4 marks**)

State the Birkhoff ergodic theorem for an ergodic transformation.

- (b) (9 marks)
 - i. Define what it means that a transformation T on a measure space (X, \mathscr{B}, μ) is mixing with respect to μ ;
 - ii. Describe the elements of $\sigma^{-n}A \cap B$ where $A = C_k(a_0, \ldots, a_k)$, $B = C_l(b_0, \ldots, b_l)$ and *n* is sufficiently large (specify how large *n*) and express $\sigma^{-n}A \cap B$ as union of cylinders.
 - iii. Show that the shift map $\sigma: \Sigma_N^+ \to \Sigma_N^+$ is mixing with respect to μ .
- (c) (**7 marks**)

Show that for μ -almost every $\underline{x} \in [0, 1]$ the frequency of occurrency of the pair 1, 2 as consecutive digits among the digits x_i of the sequence \underline{x} , that is

$$\lim_{n \to \infty} \frac{1}{n} \operatorname{Card} \{ 0 \le i < n, \text{ such that } x_i = 1, x_{i+1} = 2 \}$$

exists and compute its value. Justify carefully all your arguments.

(d) (**5 marks**)

Give an example of an ergodic measure ν on $(\Sigma_N^+, \mathscr{A})$ such that for ν -almost every $x \in \Sigma_N^+$ the frequency of occurrency of the pair of consecutive digits 1, 2 exists but is NOT equal to the product of the frequencies of occurrence of the digits 1 and 2.