Problem Set 10

HAND IN on MONDAY, December 11.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]

SET Exercises: do ONE of the following problems (from past year exams).

1. Consider the torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ as a measure space with the 2 -dimensional Lebesgue measure λ and as a topological space with the distance d induced by the Euclidean distance.
Let $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be the transformation given by

$$
T(x, y)=(x+\alpha \quad \bmod 1, x+y \quad \bmod 1), \quad(x, y) \in[0,1]^{2}
$$

One can show and you can use that T preserves λ.
(a) (4 marks)
i. Compute $T^{n}(x, y)$ for $n=2,3$.
ii. Prove by induction that, for any $n \in \mathbb{N}$,

$$
T^{n}(x, y)=\left(\begin{array}{ll}
x+n \alpha & \bmod 1, y+n x+\frac{n(n-1)}{2} \alpha \bmod 1
\end{array}\right)
$$

(b) (9 marks)

Fix a positive integer n and $\epsilon>0$.
i. Define what it means for a set $S \subset \mathbb{T}^{2}$ to be an (n, ϵ)-spanning set for T. Include the definition of d_{n}.
ii. State a formula for the topological entropy $h_{t o p}(T)$ in terms of the cardinality of (n, ϵ)-spanning sets.
iii. Show that if k in an integer such that $\frac{1}{k}<\frac{\epsilon}{2}$, the set S given by

$$
S=\left\{\left(\frac{i}{n k}, \frac{j}{k}\right), \quad 0 \leq i<k, 0 \leq j<n k\right\}
$$

is an (n, ϵ)-spanning set.
Hint: you might want to use the formula in part (a).
iv. Conclude that $h_{\text {top }}(T)=0$.
(c) (7 marks)
i. State what it means for a topological dynamical system $f: X \rightarrow X$ on a metric space (X, d) to be expansive.
ii. Show that $T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is not expansive.
(d) (5 marks)

Let (X, d) a compact metric space and let $f: X \rightarrow X$ be a topological dynamical system. Show that if there exists an integer $N>0$ such that f^{N} is the identity transformation, then $h_{t o p}(T)=0$.
[Hint: Feel free to use without justifying it that, since X is compact, for any $\epsilon>0$ and any $n \in \mathbb{N}$ there exists a finite (n, ϵ)-spanning set.]
2. Let

$$
T_{A}\left(x_{1}, x_{2}\right)=\left(x_{1}+2 x_{2} \quad \bmod 1,2 x_{1}+3 x_{2} \quad \bmod 1\right)
$$

be the toral automorphism defined by the matrix

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)
$$

You can assume and use that T_{A} preserves the two dimensional Lebesgue measure λ on \mathbb{T}^{2}.
(a) (9 marks)
i. Let $T: X \rightarrow X$ be a measure preserving dynamical system on measure space (X, \mathscr{A}, μ). State a sufficient condition for T to be ergodic with respect to μ involving functions in $L^{2}(X, \mu)$.
ii. Using Fourier series show that T_{A} is ergodic with respect to λ. Justify carefully all your arguments.
[You can use without proof that if $\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ is different than $\underline{0}=(0,0)$, then the vectors

$$
\left(A^{T}\right)^{k}\binom{n_{1}}{n_{2}}=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)^{k}\binom{n_{1}}{n_{2}}, \quad k \in \mathbb{N}
$$

are all distinct and their norms grow to infinity.]
(b) (5 marks)

Denote by $\left(x_{1}^{(k)}, x_{2}^{(k)}\right)=T^{k}\left(x_{1}, x_{2}\right)$ the points in the orbit $\mathcal{O}_{T}^{+}\left(\left(x_{1}, x_{2}\right)\right)$. Show that the frequency of $0 \leq k<n$ such that

$$
0<x_{1}^{(k)}+x_{2}^{(k)}<1
$$

tends to $1 / 2$ as n tends to infinity for λ-almost every $\left(x_{1}, x_{2}\right) \in \mathbb{T}^{2}$.
(c) (7 marks)
i. Show that $\left(x_{1}, x_{2}\right)$ is a periodic point of period n for T_{A} if and only if then there exists $\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ such that

$$
\left(A^{n}-I d\right)\binom{x_{1}}{x_{2}}=\binom{n_{1}}{n_{2}}
$$

where $I d$ denotes the identity matrix.
ii. Show that the number of periodic points of period two is at most the number of integer points contained in the the parallelogram P which has as sides the segment from $(0,0)$ to $(4,8) \in \mathbb{R}^{2}$ and the segment from $(0,0)$ to $(8,12)$.
(d) (4 marks)

Show that, if $\operatorname{Card}\left(\operatorname{Per}_{n}\left(T_{A}\right)\right)$ denotes the number of periodic points of period n for T_{A}, one has

$$
\lim _{n \rightarrow+\infty} \frac{\log \operatorname{Card}\left(\operatorname{Per}_{n}\left(T_{A}\right)\right)}{n}=\log \lambda
$$

where $\lambda>1$ is the largest eigenvalue of the matrix A. Justify your answer.
3. Let $G:[0,1] \rightarrow[0,1]$ denote the Gauss map, given by

$$
G(x)= \begin{cases}0 & \text { if } x=0 \\ \left\{\frac{1}{x}\right\}=\frac{1}{x} & \bmod 1 \\ \text { if } 0<x \leq 1\end{cases}
$$

(a) (8 marks)

Let μ_{G} be the Gauss measure given by integrating the density $\frac{1}{\log 2}\left(\frac{1}{1+x}\right)$.
Recall that G preserves the Gauss measure.
i. State what it means that $T:(X, \mathscr{A}) \rightarrow(X, \mathscr{A})$ preserves a measure μ on (X, \mathscr{A}).
ii. Express the preimage $G^{-1}\left(\frac{1}{2}, 1\right)$ as union of disjoint intervals.
iii. Compute $\mu_{G}\left(G^{-1}\left(\frac{1}{2}, 1\right)\right)$.
(b) (6 marks)

Let $\sigma: \Sigma \rightarrow \Sigma$ be the shift map on the space $\Sigma=\mathbb{N}^{\mathbb{N}}$ of sequences $\underline{a}=\left(a_{n}\right)_{n \in \mathbb{N}}$ with a_{i} positive integers.
Let $X=[0,1)-\mathbb{Q}$ the set of irrational points in $[0,1)$ and consider the map $\psi: \Sigma \rightarrow X$ given by

$$
\psi(\underline{a})=\left[a_{1}, a_{2}, \ldots,\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}} .
$$

i. State what it means that $\psi: \Sigma \rightarrow X$ is a conjugagy between a dynamical system $f: X \rightarrow X$ and $\sigma: \Sigma \rightarrow \Sigma$.
ii. Show that ψ is a conjugacy between the Gauss map $G: X \rightarrow X$ and $\sigma: \Sigma \rightarrow \Sigma$. [You can use without proof that any irrational number $x \in[0,1]$ admits a unique continued fraction expansion.]
(c) (11 marks)

By specifying the entries of their continued fraction expansions, give examples of three points $x, y, z \in[0,1)$ which satisfy the following properties. Justify your answers.
i. The point x is a periodic point of period 3 for G.
ii. The point y is non periodic and each even iterate (that is, each iterate of the form $G^{2 n}(y)$ for $\left.n \in \mathbb{N}\right)$ belongs to the left half of the unit interval.
iii. The orbit $\mathscr{O}_{G}^{+}(z)$ accumulates to $\frac{1}{3}$, that is there is an increasing subsequence n_{k} such that

$$
\lim _{k \rightarrow \infty} G^{n_{k}}(z)=\frac{1}{3}
$$

4. Let $\left(\Sigma_{N}^{+}, \mathscr{A}\right)$ be the 1 -sided full shift space on $N \geq 2$ symbols with the σ-algebra \mathscr{A} generated by cylinder sets. Let $\underline{p}=\left(p_{1}, \ldots, p_{n}\right)$ be a probability vector and let μ be the Bernoulli measure on $\left(\Sigma_{N}^{+}, \mathscr{A}\right)$, that is the unique measure such that

$$
\mu\left(C_{k}\left(a_{0}, \ldots, a_{k}\right)\right)=p_{a_{0}} \ldots p_{a_{k}}
$$

for all cylinder sets $C_{k}\left(a_{0}, \ldots, a_{k}\right)$.
(a) (4 marks)

State the Birkhoff ergodic theorem for an ergodic transformation.
(b) (9 marks)
i. Define what it means that a transformation T on a measure space (X, \mathscr{B}, μ) is mixing with respect to μ;
ii. Describe the elements of $\sigma^{-n} A \cap B$ where $A=C_{k}\left(a_{0}, \ldots, a_{k}\right), B=C_{l}\left(b_{0}, \ldots, b_{l}\right)$ and n is sufficiently large (specify how large n) and express $\sigma^{-n} A \cap B$ as union of cylinders.
iii. Show that the shift map $\sigma: \Sigma_{N}^{+} \rightarrow \Sigma_{N}^{+}$is mixing with respect to μ.
(c) (7 marks)

Show that for μ-almost every $\underline{x} \in[0,1]$ the frequency of occurrency of the pair 1,2 as consecutive digits among the digits x_{i} of the sequence \underline{x}, that is

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Card}\left\{0 \leq i<n, \quad \text { such that } x_{i}=1, x_{i+1}=2\right\}
$$

exists and compute its value. Justify carefully all your arguments.
(d) (5 marks)

Give an example of an ergodic measure ν on $\left(\Sigma_{N}^{+}, \mathscr{A}\right)$ such that for ν-almost every $x \in \Sigma_{N}^{+}$ the frequency of occurrency of the pair of consecutive digits 1,2 exists but is NOT equal to the product of the frequencies of occurence of the digits 1 and 2.

