Dynamical Systems and Ergodic Theory Solutions 10

Solutions to Problem Set 10

1. (a) i

ii.

ii.

iii.

iv.

ii.

For n = 1,2 we have

T?(z,y) = (z+2a mod 1,y +2r+a modl),
T3(z,y) = (z+3a mod1l,y+3z+3a mod 1).

The formula is true for n = 1 by i. If it is true for n, then

(n—1)

Tn+1(z,y)_((x—|—na)+oz mod 1,y—|—n:c—|—n 5 + (z +na) mod 1)

(n—1)+2n

:(x+(n+1)a modl,y+(n+1)x+n 5 a modl)

which proves the formula for n + 1 since n(n — 1) +2n =n? +n =n(n +1).

i. We say that S is an (n, e)—spanning set for 7" if for any z € T? there exists y € S

such that d,(z,y) < ¢, where

The topological entropy of T is given 1
[ = log(Spa
htoP( ) lim lim sup w’

=0 pooo n

where Span(n, €) is the minimal cardinality of an (n, €)—spanning set.
Given z = (x1,32) € T?, let y = (i/k,j/nk) € S be such that |z; —i/k| < 1/k and
|ze — j/nk| < 1/nk. By the formula in (a) we have that, for 0 < m < n, since

€
< > |zo + may — (y2 +my1)| <

| =

|z1 + ko — (y1 + ka)| <

2 2
d(T’“(g),T’“(g)) < %%—% <€, for 0 < k < n.

Thus d,(z,y) < € as desired.

Fix € > 0 and k such that 1/k < €/2. Since the set S in the previous point is
(n, €)—spanning and has cardinality nk?, the minimal cardinality Span(n,e) of an
(n, €)—spanning set satisfies Span(n,€) < nk?. Thus

hEP(T) := lim sup < lim limsup
n—00 n %—)0 n—o00
Thus h°P(T) = 0 for every € and since hyop(T') = lim_,q h°P(T'), this shows that the
topological entropy of Ay, (T") < 0. Since hyop(T) is positive, it has to be zero.

i. A topological dynamical system f : X — X to be expansive with expansivity constant

v > 0iffor all x,y € X such that x # y there exists n € N such that d(f™(z), f"(y)) >
v.

For any v > 0, if y = (y1,42), 2 = (21,72) € T? are such that 21 = y; and |7y — 32| <
v/2, by the formula in (a) we have that for any n € N

v
|1 +na — (y1 +na)| < 3 |zo + nay — (y2 +nyr)| = |v2 — y2| < v/2,

thus d(T™(z),T"(y)) < v for any n € N. This shows that v is not an expansivity
constant and thus that 7' is not expansive.
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2.

(d)

(a)

By compactness of X, using the Hint for n = N, for any € > 0 and any n € N there exists
a finite (N, ¢)-spanning set S. Let us show that S is (n,e¢)—spanning for any n > N.
Given z € X, let y € S be such that dy(z,y) < €, which exists by definition of spanning
set. Since for any 0 < k < n we can write k =[N + 4, where ] € Nand 0 <1i < N, and
f is the identity, we have that f* = (f¥)! o fi = f*. Thus

dn(2,y) = max. d(f*(z), fF(y)) = A d(f'(z), f'(y)) = dn(z,y) <,

Thus, since for any € > 0

BP(f) = Tim log Span(n, €) < lim log Card(S) _0
n— oo n n—00 n
we have that the topological entropy, which is non negative by definition, satisfies also

hiop(f) < 0 and hence it is zero.

i. To prove that T4 is ergodic with respect to A it is enough to consider a function
f € L?(T?, \) that is invariant under T4, that is f o T4 = f, and to show that f has
to be constant A-almost everywhere.

ii. Since f € L?(T?,)\), we can represent f as a 2—dimensional Fourier series, that is

[y = Y epemiminan, M)

n=(n1,n2)€Z?

where

1 1
ew= o = [ [ Stz
0 0

are the Fourier coefficients and the equality holds in the L? sense.
Evaluating the Fourier expansion at Ta(z,y) = (21 + 2z2 — k1,221 + 3x2 — ko)
(where ki, ko are respectively the integer parts of xy + 2xs and 2z + 3xs), since
e~ 2mimky — g=2min2k: — 1 hecause kin; and kyng are integers, we get

f ° TA(ml x2) — Z CneZWi[nl(w1+2x2)+n2(2x1+3x2)]

(n1,m2)€Z?
— § cn€27ri(n1 +2n2)a:1627ri(2n1 +3n2)1;2).

(n1,n2)€Z?

By invariance of f, since f o T4 = f, we can equate (1) and (2):

E Cne27ri(nlzl+n2:52) _ E Cn627r7,'(n1+2n2)a:1 6271'1'(277,1 +3n2)zo )

n=(ni,nz)€Z> (n1,n2)€Z?

By uniqueness of Fourier coefficients, for any n € Z? we have Cnyms = Cnq+2n5,2n1+3ns -
Remark that ny 4 2n9,2n; + 3ny are the entries of the vector (A7 )n (where n is here
a column vector). Thus, we get by induction that |cn, n,| = [cpe x| for any k € N,
where n¥ n% are the entries of the vector (AT)*n. Since by the Hint the norms of
this vectors grow as k — oo as long as n # (0,0), by the Riemann Lebesgue Lemma,

i fepr | = 0.

Since the value of |cn:1€’n;2€| is independent on k, this shows that it has to be zero, so,
for k = 0 we must have |¢,, n,| = 0 for any n # (0,0). Thus, the only non-zero term
in the Fourier expansion is possibly c(g,), so f is constant. By part i, we conclude
that T4 is ergodic.
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(b) Remark first of all that if we denote by A the lower triangle
A = {(z1,z2) € T? such that 0 < z; + 2o < 1} C T?,
then we have
o<z a1 o 2® =P P)ea.
Thus, given z € T?, the frequencies we are interested in can be rewritten as
%{0§k<n,0<x§ )+x2 < 1}—7{O<k‘<n Th(z1,20) € A}.

Then the frequencies of visits of  to A can be rewritten as

Card {0<k<n-—1, Tk(z) € A 1
(0<ksn @ea} _ ZXATk
n

Since T4 is ergodic and preserves the probability measure A, we can apply Birkhoff ergodic
theorem to the function f = ya, which is measurable since A € &/ and integrable since
J xadX = A(A) <1 < +oo. Thus, we get that for A-almost every (z1,z2) € T?

n—1

fim 5" xa(Th(@) = [xadr=A@).
k=0

Since the set A is a right isoceles triangle with sides of length 1 (the lower left half of the
square), the area A(A) is 1/2. Thus, for A-almost every z in T

1
7{0<k‘<n 0<x(k)+x§k)<1}:§

(c¢) i If the point (x,y) is periodic of period n then f4(x,y) = (z,y) and by definition of
fa this means that there exists k,l € Z such that

e(2)-(0)(1) -
n()-(): w1 (1 1)

ii. By the previous point, it is enough to count how many points with integer coordinates
there are in the parallelogram P[0,1)2. Since

o . (5 8\ (1 0\ _ (4 8
A_Id_(s 13 0 1) \8 12
the parallelogram P is generated by the image of the vectors e;(1,0) and es = (0, 1),
that are exactly the vectors from (0,0) to (4,8) and from (0,0) to (8,12).

(d) By the previous parts, the number of periodic points of period n is equal to the number
of integer points inside the parallelogram P, which is the image of the unit square [0, 1]2
by the linear map A™ — I'd. Thus Card(Per,) is asymptotic to (and actually equal to, by
Picks’ theorem) the area of this parallogram, which is given by det(A™ — Id). Since A has
determinant —1, if A\ > 1 is its largest eigenvector, the other eigenvector is —1/A which
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has absolute value less than one. Then A™ has eigenvectors A", 1/A"™ and then (A™ — I)
has eigenvectors A\ — 1,1/A"™ — 1. So, putting everything together we proved that

Area(P,) = |det(A" —I)| = |(A" = 1)(1/A* = 1)| = |\" + 1/A" = 2|.

It follows that

n 2n __ n
lim log Card(Per,(Ta)) — lim log(A™(1+1/X 2/A™)
n—-4oo n n——+oo n
2n _ n
—logA+ lim log(1+1/A 2/A™)
n—-+4oo n

since \"" — oo.

3. (a) i

iii.

ii.

ii.

iii.

Saying that G is measure-preserving with respect to the Gauss measure ug means
that for any measurable set A € &7, we have G~1(A) is measurable and

pe(G™H(A)) = pa(A).

. The preimage G~! (%, 1) consists of the union of countably many intervals each of the

form G,'(1,1) for a branch G,,(z) = L — n of the Gauss map. Each is

x

1 1 1 1
G;l »l)=qzsta<--n<bp=|——,—|.
2 T n—+1 n+s

Since G preserves the measure pug,

(1 1 Y og(1 + ) log 3
= <G (2’ )> He (2’ s log?2 log 2

i. The map ¢ : ¥ — X is a conjugagy if it is bijective (injective and surjective) and

Yoo =foy.
The map 1) is bijective since every irrational number in [0,1) admits a unique con-
tinued fraction expansion with digits a; € N. Moreover, we have

Y(o(a)) = Y((ait1)ien) = laz,az,...,];

1 1 1
G(’L/}(a)):G<a1+ agi...) - {a1+a2+...} - az + ...
s0 ¥(0(a)) = f((@)) for all a € X.

i. Any point © = [zg, 1, ...| whose digits are periodic of period 3 (that is z;435 = x;

for any 7) is a periodic point of period 3 for G;

Let y = [1,90, 1,41, 1,92, ...] where y; are any integer digits. Since the 2n'" entry is
equal to 1, G*"(y) € P, = (%, 1].

Let z = [2, 20,2, 21,2, 22, ...] where the integers z; satisfy lim; ,~, z; = 0. Since the
2nt" entry is equal to 2 and the following digit is z,,

3+zn+1’3+

Zn

1 1
G*(y) e NG H(P,,) = ( i i >’

which shows that G*"(y) — 1/3 as n — oco.
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4. (a) Birkhoff ergodic theorem for an ergodic transformation states that if (X, %, u) is a prob-
ability space and T': X — X is an ergodic measure-preserving transformation, for any
fe LY X, B, pn), for p-almost every z € X the following limit exists and we have

n—1
Jim =S e = [ san
k=0

(b) i A measure-preserving transformation T : X — X of the probability space (X, <, u)
is mixing with respect to p if for any two measurable sets A, B € &

lim p(T7"(A) N B) = p(A)u(B).

n—oo

ii. If n > N, where N =k + n, any element z of the form
QZCL(),...,ak7:1717...,xnfl,bo,...,bl,...
is such that z € o=V Cy(ao,...,ar) N Cy(by,...,b). Thus,

o NANB = U Chir(ag, ... 0k, 1, ..., Ty, bo, ..., 0p).

T1yeesTm—1

iii. By the previous point and by definition of Bernoulli measure, since all the cylinders
in the above union are disjoint, we have

M(U_NAHB): Z /’L(Cn-i-k(aOa"'va'kvxl)"'7xn—17b07"'abl))
= Z pao o ’pakpml o 'pibn_lpbo . 'pbl'

Since for each 1 < i < n, > p,, = 1 (because p is a probability vector), this shows
that for any n > N

M(U_NA n B) = Pao """ PayPbg - - - Pb; = N(A)IU(B)

Since it is enough to verify the mixing relation for cylinders, this shows that o is
mixing with respect to p.

(c) Remark that zop = 1 and z; = 2 iff z belongs to the cylinder Co(1,2). Since o ((x))ren) =
(x1)irr € N, we also have that z; = 1, 2,41 = 2 iff 0(z) € C5(1,2). Thus

Card{0 <i<mn, such that z; =1,2,41 = N} =
Card{0 <i<mn, such that o'(z) € Cx(1,2)} = Z Xu(1,2) (0 (2)),

0<i<n

where x ¢, (1,2) denotes the characteristic function of the cylinder C(1,2). Since o preseves
the Bernoulli measure p (which is a probability measure) and x¢,(1,2) is integrable, by
the Birkhoff ergodic theorem, for p-almost every z € ZE, the following limit exists and
it given by

o1 i
Jm 37 e ©@@)) = [ Xewadu = u(Ca(1.2) = pip,

0<i<n

Thus for p-almost every z € E} the frequency of occurrency of the pair 1, 2 as consecutive
digits is p1ps.
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(d) Let v be a Markov measure on (X3, o) which is given by a stochastic matrix P with left
eigenvector p such that Pro £ po.
[Recall that given a stochastic matrix P, if p is a probability vector which is a left
eigenvector for P, so that pP = p, the Markov measure pp is the unique measure that
on cylinders sastisfies a a

/J(Ok(am s 7ak)) = paOPaoal s Pak,lak

and that the full shift o is mixing and hence ergodic with respect to any Markov measure.
If v = pup where P is such that Pys # pa, then by the Birkhoff ergodic theorem, reasoning
as above, the desired frequency is given by p1 P12 # p1p2.]



