Solutions to Problem Set 10

1. (a) i. For $n=1,2$ we have

$$
\begin{aligned}
& T^{2}(x, y)=(x+2 \alpha \quad \bmod 1, y+2 x+\alpha \quad \bmod 1) \\
& T^{3}(x, y)=(x+3 \alpha \quad \bmod 1, y+3 x+3 \alpha \quad \bmod 1)
\end{aligned}
$$

ii. The formula is true for $n=1$ by i. If it is true for n, then

$$
\begin{aligned}
T^{n+1}(x, y) & =\left(\begin{array}{lll}
(x+n \alpha)+\alpha & \bmod 1, y+n x+\frac{n(n-1)}{2}+(x+n \alpha) & \bmod 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
x+(n+1) \alpha & \bmod 1, y+(n+1) x+\frac{n(n-1)+2 n}{2} \alpha & \bmod 1
\end{array}\right)
\end{aligned}
$$

which proves the formula for $n+1$ since $n(n-1)+2 n=n^{2}+n=n(n+1)$.
(b) i. We say that S is an (n, ϵ)-spanning set for T if for any $\underline{x} \in \mathbb{T}^{2}$ there exists $\underline{y} \in S$ such that $d_{n}(\underline{x}, \underline{y}) \leq \epsilon$, where

$$
d_{n}(\underline{x}, \underline{y})=\max _{0 \leq k<n} d\left(T^{k}(\underline{x}), T^{k}(\underline{y})\right) .
$$

ii. The topological entropy of T is given by

$$
h_{t o p}(T)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{\log (\operatorname{Span}(n, \epsilon))}{n}
$$

where $\operatorname{Span}(n, \epsilon)$ is the minimal cardinality of an (n, ϵ)-spanning set.
iii. Given $\underline{x}=\left(x_{1}, x_{2}\right) \in \mathbb{T}^{2}$, let $\underline{y}=(i / k, j / n k) \in S$ be such that $\left|x_{1}-i / k\right| \leq 1 / k$ and $\left|x_{2}-j / n k\right| \leq 1 / n k$. By the formula in (a) we have that, for $0 \leq m<n$, since

$$
\begin{gathered}
\left|x_{1}+k \alpha-\left(y_{1}+k \alpha\right)\right| \leq \frac{1}{k} \leq \frac{\epsilon}{2}, \quad\left|x_{2}+m x_{1}-\left(y_{2}+m y_{1}\right)\right| \leq \frac{m}{k n} \leq \frac{1}{k}<\frac{\epsilon}{2} \\
d\left(T^{k}(\underline{x}), T^{k}(\underline{y})\right) \leq \sqrt{\frac{\epsilon^{2}}{4}+\frac{\epsilon^{2}}{4}}<\epsilon, \quad \text { for } 0 \leq k<n
\end{gathered}
$$

Thus $d_{n}(\underline{x}, \underline{y})<\epsilon$ as desired.
iv. Fix $\epsilon>0$ and k such that $1 / k<\epsilon / 2$. Since the set S in the previous point is (n, ϵ)-spanning and has cardinality $n k^{2}$, the minimal cardinality $\operatorname{Span}(n, \epsilon)$ of an (n, ϵ)-spanning set satisfies $\operatorname{Span}(n, \epsilon) \leq n k^{2}$. Thus

$$
h_{\epsilon}^{t o p}(T):=\limsup _{n \rightarrow \infty} \frac{\log (\operatorname{Span}(n, \epsilon))}{n} \leq \lim _{\frac{1}{N} \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{\log \left(n k^{2}\right)}{n}
$$

Thus $h_{\epsilon}^{t o p}(T)=0$ for every ϵ and since $h_{t o p}(T)=\lim _{\epsilon \rightarrow 0} h_{\epsilon}^{t o p}(T)$, this shows that the topological entropy of $h_{t o p}(T) \leq 0$. Since $h_{t o p}(T)$ is positive, it has to be zero.
(c) i. A topological dynamical system $f: X \rightarrow X$ to be expansive with expansivity constant $\nu>0$ if for all $x, y \in X$ such that $x \neq y$ there exists $n \in \mathbb{N}$ such that $d\left(f^{n}(x), f^{n}(y)\right) \geq$ ν.
ii. For any $\nu>0$, if $\underline{y}=\left(y_{1}, y_{2}\right), \underline{x}=\left(x_{1}, x_{2}\right) \in \mathbb{T}^{2}$ are such that $x_{1}=y_{1}$ and $\left|x_{2}-y_{2}\right|<$ $\nu / 2$, by the formula in (a) we have that for any $n \in \mathbb{N}$

$$
\left|x_{1}+n \alpha-\left(y_{1}+n \alpha\right)\right| \leq \frac{\nu}{2}, \quad\left|x_{2}+n x_{1}-\left(y_{2}+n y_{1}\right)\right|=\left|x_{2}-y_{2}\right| \leq \nu / 2
$$

thus $d\left(T^{n}(\underline{x}), T^{n}(\underline{y})\right) \leq \nu$ for any $n \in \mathbb{N}$. This shows that ν is not an expansivity constant and thus that T is not expansive.
(d) By compactness of X, using the Hint for $n=N$, for any $\epsilon>0$ and any $n \in \mathbb{N}$ there exists a finite (N, ϵ)-spanning set S. Let us show that S is (n, ϵ)-spanning for any $n \geq N$. Given $x \in X$, let $y \in S$ be such that $d_{N}(x, y)<\epsilon$, which exists by definition of spanning set. Since for any $0 \leq k \leq n$ we can write $k=l N+i$, where $l \in \mathbb{N}$ and $0 \leq i<N$, and f^{N} is the identity, we have that $f^{k}=\left(f^{N}\right)^{l} \circ f^{i}=f^{i}$. Thus

$$
d_{n}(x, y)=\max _{0 \leq k<n} d\left(f^{k}(x), f^{k}(y)\right)=\max _{0 \leq i<N} d\left(f^{i}(x), f^{i}(y)\right)=d_{N}(x, y)<\epsilon
$$

Thus, since for any $\epsilon>0$

$$
h_{\epsilon}^{t o p}(f)=\lim _{n \rightarrow \infty} \frac{\log \operatorname{Span}(n, \epsilon)}{n} \leq \lim _{n \rightarrow \infty} \frac{\log \operatorname{Card}(S)}{n}=0
$$

we have that the topological entropy, which is non negative by definition, satisfies also $h_{t o p}(f) \leq 0$ and hence it is zero.
2. (a) i. To prove that T_{A} is ergodic with respect to λ it is enough to consider a function $f \in L^{2}\left(\mathbb{T}^{2}, \lambda\right)$ that is invariant under T_{A}, that is $f \circ T_{A}=f$, and to show that f has to be constant λ-almost everywhere.
ii. Since $f \in L^{2}\left(\mathbb{T}^{2}, \lambda\right)$, we can represent f as a 2 -dimensional Fourier series, that is

$$
\begin{equation*}
f(x, y)=\sum_{\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} c_{\underline{n}} e^{2 \pi i\left(n_{1} x+n_{2} y\right)} \tag{1}
\end{equation*}
$$

where

$$
c_{\underline{n}}=c_{n_{1}, n_{2}}=\int_{0}^{1} \int_{0}^{1} f(x, y) e^{-2 \pi i\left(n_{1} x+n_{2} y\right)} \mathrm{d} x \mathrm{~d} y
$$

are the Fourier coefficients and the equality holds in the L^{2} sense.
Evaluating the Fourier expansion at $T_{A}(x, y)=\left(x_{1}+2 x_{2}-k_{1}, 2 x_{1}+3 x_{2}-k_{2}\right)$ (where k_{1}, k_{2} are respectively the integer parts of $x_{1}+2 x_{2}$ and $2 x_{1}+3 x_{2}$), since $e^{-2 \pi i n_{1} k_{1}}=e^{-2 \pi i n_{2} k_{2}}=1$ because $k_{1} n_{1}$ and $k_{2} n_{2}$ are integers, we get

$$
\begin{align*}
f \circ T_{A}\left(x_{1}, x_{2}\right) & =\sum_{\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} c_{\underline{n}} e^{2 \pi i\left[n_{1}\left(x_{1}+2 x_{2}\right)+n_{2}\left(2 x_{1}+3 x_{2}\right)\right]} \\
& =\sum_{\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} c_{\underline{n}} e^{2 \pi i\left(n_{1}+2 n_{2}\right) x_{1}} e^{\left.2 \pi i\left(2 n_{1}+3 n_{2}\right) x_{2}\right)} . \tag{2}
\end{align*}
$$

By invariance of f, since $f \circ T_{A}=f$, we can equate (1) and (2):

$$
\sum_{\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} c_{\underline{n}} e^{2 \pi i\left(n_{1} x_{1}+n_{2} x_{2}\right)}=\sum_{\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} c_{\underline{n}} e^{2 \pi i\left(n_{1}+2 n_{2}\right) x_{1}} e^{2 \pi i\left(2 n_{1}+3 n_{2}\right) x_{2}} .
$$

By uniqueness of Fourier coefficients, for any $\underline{n} \in \mathbb{Z}^{2}$ we have $c_{n_{1}, n_{2}}=c_{n_{1}+2 n_{2}, 2 n_{1}+3 n_{2}}$. Remark that $n_{1}+2 n_{2}, 2 n_{1}+3 n_{2}$ are the entries of the vector $\left(A^{T}\right) \underline{n}$ (where \underline{n} is here a column vector). Thus, we get by induction that $\left|c_{n_{1}, n_{2}}\right|=\left|c_{n_{1}^{k}, n_{2}^{k}}\right|$ for any $k \in \mathbb{N}$, where n_{1}^{k}, n_{2}^{k} are the entries of the vector $\left(A^{T}\right)^{k} \underline{n}$. Since by the Hint the norms of this vectors grow as $k \rightarrow \infty$ as long as $\underline{n} \neq(0,0)$, by the Riemann Lebesgue Lemma,

$$
\lim _{k \rightarrow \infty}\left|c_{n_{1}^{k}, n_{2}^{k}}\right|=0
$$

Since the value of $\left|c_{n_{1}^{k}, n_{2}^{k}}\right|$ is independent on k, this shows that it has to be zero, so, for $k=0$ we must have $\left|c_{n_{1}, n_{2}}\right|=0$ for any $\underline{n} \neq(0,0)$. Thus, the only non-zero term in the Fourier expansion is possibly $c_{(0,0)}$, so f is constant. By part i, we conclude that T_{A} is ergodic.
(b) Remark first of all that if we denote by Δ the lower triangle

$$
\Delta=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{T}^{2} \text { such that } 0<x_{1}+x_{2}<1\right\} \subset \mathbb{T}^{2}
$$

then we have

$$
0<x_{1}^{(k)}+x_{2}^{(k)}<1 \quad \Leftrightarrow \quad \underline{x}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \in \Delta .
$$

Thus, given $\underline{x} \in \mathbb{T}^{2}$, the frequencies we are interested in can be rewritten as

$$
\frac{1}{n}\left\{0 \leq k<n, 0<x_{1}^{(k)}+x_{2}^{(k)}<1\right\}=\frac{1}{n}\left\{0 \leq k<n, T_{A}^{k}\left(x_{1}, x_{2}\right) \in \Delta\right\}
$$

Then the frequencies of visits of \underline{x} to Δ can be rewritten as

$$
\frac{\operatorname{Card}\left\{0 \leq k \leq n-1, \quad T^{k}(\underline{x}) \in \Delta\right\}}{n}=\frac{1}{n} \sum_{k=0}^{n-1} \chi_{\Delta}\left(T^{k}(x)\right)
$$

Since T_{A} is ergodic and preserves the probability measure λ, we can apply Birkhoff ergodic theorem to the function $f=\chi_{\Delta}$, which is measurable since $\Delta \in \mathscr{A}$ and integrable since $\int \chi_{\Delta} \mathrm{d} \lambda=\lambda(\Delta) \leq 1<+\infty$. Thus, we get that for λ-almost every $\left(x_{1}, x_{2}\right) \in \mathbb{T}^{2}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_{\Delta}\left(T_{A}^{k}(\underline{x})\right)=\int \chi_{\Delta} \mathrm{d} \lambda=\lambda(\Delta)
$$

Since the set Δ is a right isoceles triangle with sides of length 1 (the lower left half of the square), the area $\lambda(\Delta)$ is $1 / 2$. Thus, for λ-almost every \underline{x} in \mathbb{T}

$$
\frac{1}{n}\left\{0 \leq k<n, 0<x_{1}^{(k)}+x_{2}^{(k)}<1\right\}=\frac{1}{2}
$$

(c) i. If the point (x, y) is periodic of period n then $f_{A}^{n}(x, y)=(x, y)$ and by definition of f_{A} this means that there exists $k, l \in \mathbb{Z}$ such that

$$
\begin{aligned}
& A^{n}\binom{x}{y}=\binom{x}{y}+\binom{k}{l} \Leftrightarrow \\
& \left(A^{n}-I\right)\binom{x}{y}=\binom{k}{l}, \quad \text { where } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

ii. By the previous point, it is enough to count how many points with integer coordinates there are in the parallelogram $P[0,1)^{2}$. Since

$$
A^{2}-I d=\left(\begin{array}{cc}
5 & 8 \\
8 & 13
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
4 & 8 \\
8 & 12
\end{array}\right)
$$

the parallelogram P is generated by the image of the vectors $e_{1}(1,0)$ and $e_{2}=(0,1)$, that are exactly the vectors from $(0,0)$ to $(4,8)$ and from $(0,0)$ to $(8,12)$.
(d) By the previous parts, the number of periodic points of period n is equal to the number of integer points inside the parallelogram P_{n} which is the image of the unit square $[0,1]^{2}$ by the linear map $A^{n}-I d$. Thus $\operatorname{Card}\left(\operatorname{Per}_{n}\right)$ is asymptotic to (and actually equal to, by Picks' theorem) the area of this parallogram, which is given by $\operatorname{det}\left(A^{n}-I d\right)$. Since A has determinant -1 , if $\lambda>1$ is its largest eigenvector, the other eigenvector is $-1 / \lambda$ which
has absolute value less than one. Then A^{n} has eigenvectors $\lambda^{n}, 1 / \lambda^{n}$ and then $\left(A^{n}-I\right)$ has eigenvectors $\lambda^{n}-1,1 / \lambda^{n}-1$. So, putting everything together we proved that

$$
\operatorname{Area}\left(P_{n}\right)=\left|\operatorname{det}\left(A^{n}-I\right)\right|=\left|\left(\lambda^{n}-1\right)\left(1 / \lambda^{n}-1\right)\right|=\left|\lambda^{n}+1 / \lambda^{n}-2\right|
$$

It follows that

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \frac{\log \operatorname{Card}\left(\operatorname{Per}_{n}\left(T_{A}\right)\right)}{n} & =\lim _{n \rightarrow+\infty} \frac{\log \left(\lambda^{n}\left(1+1 / \lambda^{2 n}-2 / \lambda^{n}\right)\right.}{n} \\
& =\log \lambda+\lim _{n \rightarrow+\infty} \frac{\log \left(1+1 / \lambda^{2 n}-2 / \lambda^{n}\right)}{n}
\end{aligned}
$$

since $\lambda^{n} \rightarrow \infty$.
3. (a) i. Saying that G is measure-preserving with respect to the Gauss measure μ_{G} means that for any measurable set $A \in \mathscr{A}$, we have $G^{-1}(A)$ is measurable and

$$
\mu_{G}\left(G^{-1}(A)\right)=\mu_{G}(A)
$$

ii. The preimage $G^{-1}\left(\frac{1}{2}, 1\right)$ consists of the union of countably many intervals each of the form $G_{n}^{-1}\left(\frac{1}{2}, 1\right)$ for a branch $G_{n}(x)=\frac{1}{x}-n$ of the Gauss map. Each is

$$
G_{n}^{-1}\left(\frac{1}{2}, 1\right)=\left\{x \text { s.t. } a<\frac{1}{x}-n<b\right\}=\left(\frac{1}{n+1}, \frac{1}{n+\frac{1}{2}}\right)
$$

iii. Since G preserves the measure μ_{G},

$$
\mu_{G}\left(G^{-1}\left(\frac{1}{2}, 1\right)\right)=\mu_{G}\left(\frac{1}{2}, 1\right)=\int_{\frac{1}{2}}^{1} \frac{\log (1+x)}{\log 2}=2-\frac{\log 3}{\log 2}
$$

(b) i. The map $\psi: \Sigma \rightarrow X$ is a conjugagy if it is bijective (injective and surjective) and $\psi \circ \sigma=f \circ \psi$.
ii. The map ψ is bijective since every irrational number in $[0,1)$ admits a unique continued fraction expansion with digits $a_{i} \in \mathbb{N}$. Moreover, we have

$$
\begin{gathered}
\psi(\sigma(\underline{a}))=\psi\left(\left(a_{i+1}\right)_{i \in \mathbb{N}}\right)=\left[a_{2}, a_{2}, \ldots,\right] \\
G(\psi(\underline{a}))=G\left(\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}\right)=\left\{a_{1}+\frac{1}{a_{2}+\ldots}\right\}=\frac{1}{a_{2}+\ldots}
\end{gathered}
$$

so $\psi(\sigma(\underline{a}))=f(\psi(\underline{a}))$ for all $\underline{a} \in \Sigma$.
(c) i. Any point $x=\left[x_{0}, x_{1}, \ldots\right]$ whose digits are periodic of period 3 (that is $x_{i+3}=x_{i}$ for any i) is a periodic point of period 3 for G;
ii. Let $y=\left[1, y_{0}, 1, y_{1}, 1, y_{2}, \ldots\right]$ where y_{i} are any integer digits. Since the $2 n^{t h}$ entry is equal to $1, G^{2 n}(y) \in P_{1}=\left(\frac{1}{2}, 1\right]$.
iii. Let $z=\left[2, z_{0}, 2, z_{1}, 2, z_{2}, \ldots\right]$ where the integers z_{i} satisfy $\lim _{i \rightarrow \infty} z_{i}=\infty$. Since the $2 n^{t h}$ entry is equal to 2 and the following digit is z_{n},

$$
G^{2 n}(y) \in P_{2} \cap G^{-1}\left(P_{z_{n}}\right)=\left(\frac{1}{3+\frac{1}{z_{n}+1}}, \frac{1}{3+\frac{1}{z_{n}}}\right)
$$

which shows that $G^{2 n}(y) \rightarrow 1 / 3$ as $n \rightarrow \infty$.
4. (a) Birkhoff ergodic theorem for an ergodic transformation states that if (X, \mathscr{B}, μ) is a probability space and $T: X \rightarrow X$ is an ergodic measure-preserving transformation, for any $f \in L^{1}(X, \mathscr{B}, \mu)$, for μ-almost every $x \in X$ the following limit exists and we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k}(x)\right)=\int f \mathrm{~d} \mu
$$

(b) i. A measure-preserving transformation $T: X \rightarrow X$ of the probability space (X, \mathscr{A}, μ) is mixing with respect to μ if for any two measurable sets $A, B \in \mathscr{A}$

$$
\lim _{n \rightarrow \infty} \mu\left(T^{-n}(A) \cap B\right)=\mu(A) \mu(B)
$$

ii. If $n \geq N$, where $N=k+n$, any element \underline{x} of the form

$$
\underline{x}=a_{0}, \ldots, a_{k}, x_{1}, \ldots, x_{n-1}, b_{0}, \ldots, b_{l}, \ldots
$$

is such that $\underline{x} \in \sigma^{-N} C_{k}\left(a_{0}, \ldots, a_{k}\right) \cap C_{l}\left(b_{0}, \ldots, b_{l}\right)$. Thus,

$$
\sigma^{-N} A \cap B=\bigcup_{x_{1}, \ldots, x_{n-1}} C_{n+k}\left(a_{0}, \ldots, a_{k}, x_{1}, \ldots, x_{n}, b_{0}, \ldots, b_{l}\right)
$$

iii. By the previous point and by definition of Bernoulli measure, since all the cylinders in the above union are disjoint, we have

$$
\begin{aligned}
\mu\left(\sigma^{-N} A \cap B\right) & =\sum_{x_{1}, \ldots, x_{n-1}} \mu\left(C_{n+k}\left(a_{0}, \ldots, a_{k}, x_{1}, \ldots, x_{n-1}, b_{0}, \ldots, b_{l}\right)\right) \\
& =\sum_{x_{1}, \ldots, x_{n-1}} p_{a_{0}} \cdots p_{a_{k}} p_{x_{1}} \cdots p_{x_{n-1}} p_{b_{0}} \ldots p_{b_{l}}
\end{aligned}
$$

Since for each $1 \leq i \leq n, \sum p_{x_{i}}=1$ (because \underline{p} is a probability vector), this shows that for any $n \geq N$

$$
\mu\left(\sigma^{-N} A \cap B\right)=p_{a_{0}} \cdots p_{a_{k}} p_{b_{0}} \ldots p_{b_{l}}=\mu(A) \mu(B)
$$

Since it is enough to verify the mixing relation for cylinders, this shows that σ is mixing with respect to μ.
(c) Remark that $x_{0}=1$ and $x_{1}=2$ iff \underline{x} belongs to the cylinder $C_{2}(1,2)$. Since $\sigma^{i}\left(\left(x_{k}\right)_{k \in \mathbb{N}}\right)=$ $\left(x_{k}\right)_{i+k} \in \mathbb{N}$, we also have that $x_{i}=1, x_{i+1}=2$ iff $\sigma^{i}(\underline{x}) \in C_{2}(1,2)$. Thus

$$
\begin{aligned}
& \operatorname{Card}\left\{0 \leq i<n, \quad \text { such that } x_{i}=1, x_{i+1}=N\right\}= \\
& \operatorname{Card}\left\{0 \leq i<n, \quad \text { such that } \sigma^{i}(\underline{x}) \in C_{2}(1,2)\right\}=\sum_{0 \leq i<n} \chi_{C_{2}(1,2)}\left(\sigma^{i}(\underline{x})\right),
\end{aligned}
$$

where $\chi_{C_{2}(1,2)}$ denotes the characteristic function of the cylinder $C_{2}(1,2)$. Since σ preseves the Bernoulli measure μ (which is a probability measure) and $\chi_{C_{2}(1,2)}$ is integrable, by the Birkhoff ergodic theorem, for μ-almost every $\underline{x} \in \Sigma_{N}^{+}$, the following limit exists and it given by

$$
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{0 \leq i<n} \chi_{C_{2}(1,2)}\left(\sigma^{i}(\underline{x})\right)\right\}=\int \chi_{C_{2}(1,2)} d \mu=\mu\left(C_{2}(1,2)\right)=p_{1} p_{2}
$$

Thus for μ-almost every $\underline{x} \in \Sigma_{N}^{+}$the frequency of occurrency of the pair 1,2 as consecutive digits is $p_{1} p_{2}$.
(d) Let ν be a Markov measure on $\left(\Sigma_{N}^{+}, \mathscr{A}\right)$ which is given by a stochastic matrix P with left eigenvector \underline{p} such that $P_{12} \neq p_{2}$.
[Recall that given a stochastic matrix P, if \underline{p} is a probability vector which is a left eigenvector for P, so that $\underline{p} P=\underline{p}$, the Markov measure μ_{P} is the unique measure that on cylinders sastisfies

$$
\mu\left(C_{k}\left(a_{0}, \ldots, a_{k}\right)\right)=p_{a_{0}} P_{a_{0} a_{1}} \ldots P_{a_{k-1} a_{k}}
$$

and that the full shift σ is mixing and hence ergodic with respect to any Markov measure. If $\nu=\mu_{P}$ where P is such that $P_{12} \neq p_{2}$, then by the Birkhoff ergodic theorem, reasoning as above, the desired frequency is given by $p_{1} P_{12} \neq p_{1} p_{2}$.]

