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Solutions and Feedback for Problem Set 1

Exercise 1.3: In (a) a few people forgot one of the implications. To show that Per(f)
consists exactly of points with y rational one also needs to show that (x, y) periodic implies
y rational but also that y rational implies (x, y) periodic. Many understood correctly that in
Part (b) orbits are not dense and had the correct intuitive idea. To justify the answer, one
was also expected to show formally that the definition of density fails (see Solutions).

Exercise 1.4: This was done quite well.

Exercise 1.5: Some deduced part (a) from the Dichotomy for irrational rotations. This is
Ok, but then one cannot do (b). To do Part (b) one needs to explicit the relation between ε
and n, that is show that to be less than 1/q it is enough to use n ≤ q. For this one needs to
work out the arguments by Pigeonhole Principle in part (a) explicitly. Several did not justify
well why there are infinitely many solutions.

Exercise 1.6: Many people forgot to explain why a continuous injective function is monotone.
The case f increasing was done well, some of the proofs for f decreasing were less transparent.
The easiest is possibly to consider f2.

Solutions to Set Problems

Solutions to Exercise 1.3

Part (a) To show that Per(f) consists exactly of points (x, y) ∈ X such that y is rational,
we need to show both that if y = k/n for some 0 ≤ k < n then (x, y) is periodic and that if
(x, y) ∈ Per(f) then y is rational.

We have fn(x, y) = (x + ny mod 1, y). Thus, if y = k/n for some integers 0 ≤ k < n,
then fn(x, y) = (x + k mod 1, y) = (x, y) so (x, y) is periodic of period n. Conversely, if
fn(x, y) = (x, y), then x+ny = x mod 1, that is there exists k ∈ Z such that x+ny = x+k.
Thus y = k/n is rational.

Part (b) No, there is no point whose orbit is dense. Recall that O+
f (x, y) is dense if for any

(x′, y′) ∈ X and ε > 0 there exists n ∈ N such that d(fn(x, y), (x′, y′)) < ε. Let us remark
that since fn(x, y) = (x+ny mod 1, y), the orbit O+

f (x, y) is contained in the horizontal line

{(x, y), 0 ≤ x < 1} ⊂ X, so intuitively it cannot be dense in the whole square X = [0, 1]2.
Formally, given any (x′, y′) ∈ X with y′ 6= y and any ε < |y − y′|, by the above observation
if we call (xn, yn) the points fn(x, y), we have that yn = y for any n. Thus the difference
between the y coordinates of fn(x, y) and (x′, y′) is fixed and equal to |yn− y′| = |y− y′| > ε.
Thus, for any n ∈ B

d(fn(x, y), (x′, y′)) = d((xn, yn), (x′, y′)) =
√

(xn − x′)2 + (yn − y′)2 ≥
√

(y − y′)2 ≥ ε.

Thus O+
f (x, y) is not dense.

Solutions to Exercise 1.4

Part (a) A point x ∈ [0, 1) belongs to Pern(f) iff fn(x) = x, that is 3nx = x mod 1. This
is equivalent to saying that there exists k ∈ Z such that

3nx = x+ k ⇔ (3n − 1)x = k ⇔ x =
k

3n − 1
,

and moreover that 0 ≤ k < 3n − 1, since x ∈ [0, 1). This shows that

Pern(T ) =

{
k

3n − 1
, 0 ≤ k < 3n − 1

}
.
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Part (b) To show that Pern(f) is dense in [0, 1), we need to show that for any ε > 0 and
any x ∈ [0, 1) there exists y ∈ Pern(f) such that |x − y| < ε. Let ε > 0. Choose n so that
1/(3n − 1) < ε. Consider the partition of [0, 1) into intervals of the form[

k

3n − 1
,
k + 1

3n − 1

)
, 0 ≤ k < 3n − 2.

Since they cover [0, 1), x belongs to one of them. Let k be such that k
3n−1 ≤ x < k+1

3n−1 . Let
y be one of the two endpoints, which by Part (a) is a periodic point. Thus

|x− y| < 1

3n − 1
< ε.

Part (c) Let us first show that f acts as a shift on expansions in base 3. Let us write

x =

∞∑
i=1

xi
3i
, xi ∈ {0, 1, 2}.

Such an expansion exists for any x ∈ [0, 1] and is unique for all x not of the form k/3n. Then

fn(x) = 3nx mod 1 = 3n
∞∑
i=1

xi
3i

mod 1

= 3n−1x1 + 3n−2x2 + . . . 3xn−1 + xn +

∞∑
i=n+1

xi
3i−n

mod 1 =

∞∑
i=n+1

xi
3i−n

since for 1 ≤ i ≤ n we have that 3n−ixi is an integer so it disappar modulo one. If we now
change the name of the index, setting j = i− n, we proved that

if x =

∞∑
i=1

xi
3i
, then fn(x) =

∞∑
j=1

xj+n
3j

(1)

i.e. the binary expression of f(x) is such that the digits are shifted n times. If x is periodic
of period n, fn(x) = x, thus

∞∑
j=1

xj
3j

=

∞∑
j=1

xj+n
3j

.

If the expansion in base 3 of x is unique, it follows immediately that xj+n = xj for any j ∈ N.
One should now show that the expansion in base 3 is unique, or consider the hypothetical
case in which it is not. By Part (a) we know that x = k/(3n − 1), thus it is not of the form
i/3n and hence has a unique base 3 expansion.

Solutions to Exercise 1.5

Part (a) Let α be irrational and let Rα(x) = x+α mod 1 the rotation in additive notation.
Let us consider the orbit of zero. Remark that Rnα(0) = nα mod 1. Let us first remark that
since α is irrational, points in O+

Rα
(0) are all distinct. Indeed, if there exists k 6= l such that

kα mod 1 = lα mod 1 then there exists m ∈ Z such that kα = lα + m and it follows that
α = m/(k − l) is rational, which is a contradiction.

Given ε > 0, let n ∈ N+ be such that 1/n < ε. Consider the first n+ 1 points in the orbit
of the rotation O+

Rα
(0). By , Pigeon Hole Principle, if we divide the interval into n arcs of

equal lenght, there shoud be at least two distinct iterates 0 ≤ q1 < q2 ≤ n such that Rq1α (0)
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and Rq2α (0) belong to the same interval of lenght 1/n. In other words, there exists p1, p2 such
that

|q2α+ p1 − q1α− p2| ≤
1

n
≤ ε ⇔ (q2 − q1)α mod 1 ≤ ε.

Thus, q = q2 − q1 > 0 works. Let us remark also, for part (b), that since 0 ≤ q1 < q2 ≤ n, we
have that 0 < q ≤ n.

Part (b) By the proof in part (a), given n ∈ N there exists 0 < q ≤ n such that qα
mod 1 ≤ 1

n . Thus, there exists p ∈ Z such that

|qα− p| ≤ 1

n
⇔

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qn
≤ 1

q2
,

where in the last inequality we used that q ≤ n. Assume now by contradiction that there are

only finitely many fractions p/q where p ∈ Z, q ∈ N and p, q coprime that solve the equation∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2
, say

{
p1
q1
, . . . ,

pN
qN

}
.

Choose n > 0 such that
1

n
< min
i=1,...,N

∣∣∣∣α− pi
qi

∣∣∣∣ . (2)

By Part (a), we can find 0 ≤ q ≤ n and p ∈ Z such that p/q satisfies∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

nq
≤ 1

q2
.

Thus, it is a solution to our equation. We can assume that p/q has been simplifyed so that
p, q are coprime, since if not we can simplify it and get a new solution p′/q′ where still
q′ ≤ q ≤ 1/δ. We claim that it is different than all the other solutions pi/qi, i = 1, . . . , N .
This is because, since q ≥ 1,∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

nq
≤ 1

n
< min
i=1,...,N

∣∣∣∣α− pi
qi

∣∣∣∣ ,
where in the last inequality we used the choice of n, see (2). so that p/q is strictly closer than
all the previous solutions. This gives a contradiction.

Solutions to Exercise 1.8

Part (a) An example is given by f(x) = −x which is clearly continuous and invertible
(f−1(x) = −x) and such that all points are periodic of period two since f2(x) = −(−x) = x.
Part (b) Let us first show that since f is continuos and invertible, it has to be monotone.
Assume that it is not monotone. Then there exists x1 < x2 < x3 such that f(x1) < f(x2) but
f(x2) > f(x3) or such that f(x1) > f(x2) but f(x3) < f(x1). Let us consider the first case,
the second is treated analogously. Assume also without loss of generality that f(x1) < f(x3)
(again the other case is treated analogously). Then consider the interval [x1, x2] and remark
that f(x1) < f(x3) < f(x2), that is f(x3) ∈ [f(x1), f(x2)]. Thus, by intermediate value
theorem, there exists y such x1 < y < x2 such that that f(y) = f(x3). Since y 6= x3 by
construction, this shows that f is not injective, which contradicts that f is invertible.

There are two cases to consider: f increasing or f decreasing. Assume first that f is
monotonically increasing. If f(x) = x, x is a fixde point. Assume that f(x) 6= x, say
for example that f(x) > x. Then since f is increasing f2(x) > f(x) and by induction
fn(x) > fn−1(x) for any x. In particular, fn(x) > fn−1(x) > fn−2(x) > · · · > x. So
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fn(x) 6= x for all n ∈ N+. Similarly, if f(x) < x, then fn(n) < x for all x, so again fn(x) 6= x
for all n ∈ N+.

Assume now that f is monotonically decreasing. Remark now that if f(x) 6= x, say for
example f(x) > x, then since f is strictly decreasing we have f(f(x)) < f(x). Applying
f again, since f(x) > f2(x) and f is decreasing we get f2(x) < f3(x). One can prove by
induction that

f2k+1(x) > f2k(x), f2k+2(x) < f2k+1(x), for all k ∈ N. (3)

Consider now g = f2. Let us show that since f is decreasing, g2 is increasing. Indeed if
x1 < x2, f(x1) > f(x2) and hence f2(x1) < f2(x2), that is f2 is increasing. It follows that

f2k+1(x) ≥ f2k−1(x) ≥ · · · ≥ f3(x) > f(x) > x.

Remark that a periodic point of even period is a periodic point for g = f2, since if n = 2k
with k ≥ 1 and fn(x) = x we have

x = f2k(x) = (f2)
k
(x) = gk(x), k ≥ 1.

Thus, by the previous part, g has only fixed points (and can have fixed points). So f
can have periodic points of period 2, but if x were a periodic point of even period n ≥ 3,
then n = 2k with k ≥ 2 and it would give a periodic point of period k ≥ 2 for g, which is a
contradiction.
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