Problem Set 2

HAND IN on MONDAY, October 16.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]

SET Exercises for Level 3: 1.3, 1.5 and 1.8.

SET Exercises for Level M: 1.3, 1.4, 1.5 and 1.8.

Exercise 1.1. Let $f(x) = 2x \mod 1$ be the doubling map on X = [0, 1]. Code $x \in [0, 1]$ with its itinerary with respect to $P_0 = [0, 1/2)$ and $P_1 = [1/2, 1)$. For a_0, a_1, \ldots, a_n , where $a_i \in \{0, 1\}$ for $0 \le i \le n$, let $I(a_0, a_1, \ldots, a_n)$ be the set of points whose itinerary begins with a_0, a_1, \ldots, a_n .

- (a) Draw all sets $I(a_0, a_1, a_2)$;
- (c) Show that $I(a_0, a_1, a_2, \ldots, a_n)$ is an interval of size $1/2^{n+1}$.

Exercise 1.2. Fix $m \in \mathbb{N}$, m > 1. Let $f_m : [0,1] \to [0,1]$ be the map $f_m(x) = mx \mod 1$.

- (a) Draw its graph for m = 3;
- (b) Show that f_m is not invertible;
- (c) Show that f_m is semi-conjugated to the shift map σ^+ on the set Σ_m^+ of one-sided sequences in the digits $\{0, 1, \ldots, m-1\}$.

Exercise 1.3. (SET) We say that $g: Y \to Y$ is an extension of $f: X \to X$ if there is a semi-conjugacy $\psi: Y \to X$ between g and f.

- (a) Show that the baker map $F : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ is an extension of the doubling map $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, by verifying that the semi-conjugacy is given by the projection $\psi : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}/\mathbb{Z}$ given by $\psi(x, y) = x$.
- (b) Assume that f : X → X and g : Y → Y are semiconjugated by ψ : Y → X. Show that if y is a periodic point of period n for g, then ψ(y) is a periodic point of period n for f. [*Hint*: Show first that ψ ∘ gⁿ = fⁿ ∘ ψ.]
- (c) Give an examples of an extension g of f and of a point $y \in Y$ such that $\psi(y)$ is a periodic point for f, but y is not a periodic point for g.

* Exercise 1.4. (SET for level M) Consider the coding of the doubling map with respect to the partition $\{P_0, P_1\}$, where $P_0 = [0, 1/2)$ and $P_1 = [1/2, 1)$. Let $\phi : [0, 1) \to \Sigma^+$ be the coding map which associate to a point its itinerary and $\psi : \Sigma^+ \to [0, 1)$ be the map which associate to a binary sequence the associated binary expansion (see lecture notes).

- (a) Describe the image of the coding map ϕ : what are all sequences in Σ^+ which appear as itineraries of orbits of the doubling map? Justify your answer.
- (b) Give an example a point $(a_i)_{i=1}^{\infty} \in \Sigma^+$ such that $\phi(\psi((a_i)_{i=1}^{\infty}) \neq (a_i)_{i=1}^{\infty})$. Explain.

Exercise 1.5. (SET) Let $F : [0,1)^2 \to [0,1)^2$ be the Baker map.

- (a) Draw the set $R_{-2,1}(0, 1, 1, 0)$.
- (b) Describe the sets $R_{-n,n}(a_{-n},\ldots,a_n)$ (what is their shape? width? height?).
- * (c) Show that there exists a point $(x, y) \in [0, 1)^2$ whose orbit under F is dense.

Exercise 1.6. Consider the following matrices with integer entries:

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \qquad A_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}; \qquad A_3 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}; \qquad A_4 = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$

- (a) For each of the matrices A_1, A_2, A_3 , say if the corresponding map $f_{A_i} : \mathbb{T}^2 \to \mathbb{T}^2$, i = 1, 2, 3 gives: a toral automorphism? a hyperbolic toral automorphism? Justify.
- (b) Draw geometrically (as we did in class for the CAT map) how f_{A_1} and f_{A_4} act on the unit square.

Exercise 1.7. Let $\sigma : \Sigma \to \Sigma$ be the shift map on the space $\Sigma = \mathbb{N}^{\mathbb{N}}$ of sequences $\underline{a} = (a_n)_{n \in \mathbb{N}}$ with a_i positive integers. Let $X = [0, 1) - \mathbb{Q}$ the set of irrational points in [0, 1) and consider the map $\psi : \Sigma \to X$ given by

$$\psi(\underline{a}) = [a_1, a_2, \dots,] = \frac{1}{a_1 + \frac{1}{a_2 + \dots}}.$$

- (a) Show that ψ is a conjugacy between the Gauss map $G: X \to X$ and $\sigma: \Sigma \to \Sigma$.
- (b) Describe all fixed points of G in terms of their continued fraction expansion.
- (c) Is $\psi: \Sigma \to [0,1)$ a conjugacy between $G: [0,1) \to [0,1)$ and $\sigma: \Sigma \to \Sigma$? Explain.

Exercise 1.8. (SET) Using the relation between itineraries of the Gauss map and continued fraction entries:

- (a) Find the continued fraction entries of $\alpha = \frac{57}{125}$ using itineraries of G;
- *(b) Construct an example of a point $x \in [0, 1)$ such that the orbit $\mathscr{O}_{G}^{+}(x)$ accumulates to $\frac{1}{3}$, that is there is an increasing subsequence n_k such that

$$\lim_{k \to \infty} G^{n_k}(z) = \frac{1}{3}.$$

Justify your answer.

Exercise 1.9. Using itineraries of the Gauss map:

(a) write the continued fraction expansions of the number $0 \le \alpha \le 1$ such that

$$\alpha = \frac{1}{5 + \frac{1}{4 + \alpha}}.$$

(b) construct an example of a point $x \in [0,1)$ which is non periodic under G and each even iterate (that is, each iterate of the form $G^{2n}(x)$ for $n \in \mathbb{N}$) belongs to the left half of the unit interval.

* Exercise 1.10. Let $G: [0,1] \to [0,1]$ be the Gauss map. Show that if α is a periodic point of period n for G then it is a quadratic irrational.

[*Hint*: Try first for n = 2.]