
Dynamical Systems and Ergodic Theory Solutions and Feedback Homework 3

Solutions and Feedback for Problem Set 3

Feedback

In Exercise 3.5 (a), some people said incorrectly that fn(I) consists of 2n intervals. This is
true for f−1, but the image of an interval is one interval. Part (b) and (c) were done mostly
well. Remember that the definition of topological mixing requires that fn(U) ∩ V 6= ∅ for
ALL n ≥ N . Some people checked this only for N .

In Exercise 3.6 Part (a) was done generally well. Some people forgot that a topological
semi-conjugacy should be surjective and continuous. A few did not realize for (b) that h is
NOT injective and thus not a conjugacy.

In Exercise 3.7 (a) several forgot that ψ is continuous iff the PREIMAGE of open sets
is open. Several made the mistake of saying that if U is open and ψ is continuous, ψ(U)
is open. This is false in general. Hence it is also wrong to say that all open sets are of
the form ψ(U), ψ(V ). These sets in general do not even have to be open. The correct way
to solve this exercise was to start from open sets U, V in Y and considering their preimages
ψ−1(U), ψ−1(V ), which are open (and non-empty if U, V are non-empty) and then using them
to apply that g is topologically mixing. Part (b) was done generally well, apart from a few
who messed up the definition of dense orbit and density of periodic points.

In Exercise 3.8 for Level M many gave the same incorrect solution. There were two ns
in the exercise: periodic points of period n and, in the definition of expansivity, there is an
there exists an n and many confused the two. If there exists an n, this does not have to be
the n of periodicity! This lead to many incorrect solutions and the claim that a ball of radius
ν/2 where ν is the expansivity constant cannot contain two periodic points in Pern(f). This
is not true. Even if d(fn(x), fn(y)) = d(x, y) < ν, there can be another time m ∈ N such that
d(fm(x), fm(y)) > ν, so there is no contradiction with expansivity. There were also several
correct proofs, some more complicated than others.

Solutions to Set Problems

Solutions to Exercise 3.5

Let f(x) = 2x mod 1 be the doubling map.

Part (a) Let I be a dyadic interval of the form

I =

(
i

2N
,
i+ 1

2N

)
where 0 ≤ i ≤ 2N − 1.

Let us consider the iterates fn(I), n ∈ N, of I. Let us show that if 0 ≤ n ≤ N , then fn(I) is
again a dyadic interval, but of length 1/2N−n. Remark first that since x 7→ 2x is monotone
and continuous, so the image of an interval is an interval of twice the length. Moreover, if
the endpoints of the interval are dyadic rationals, also the image of the endpoints are dyadic
rationals. Thus, if the size of this interval is less than 1, if one of the endpoints is zero or one,
the other cannot be zero or one. Thus, when we consider this interval modulo one, it is still
an interval of the same size (if the interval contained zero or one in its interior, the result of
taking it modulo one could be two intervals). Since the lenght of I is 1/2N , this shows that
for 0 ≤ n ≤ N fn(I) is again a dyadic interval of length 2n|I| = 2n/2N = 1/2N−n. More
precisely, we have

fn(I) =

(
2n

i

2N
mod 1, 2n

i+ 1

2N
mod 1

)
=

(
i mod 2N−n

2N−n
,
i+ 1 mod 2N−n

2N−n

)
=

(
in

2N−n
,
in + 1

2N−n

)
,
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where in = (i mod 2N−n) is the rest of the division of i by 2N−n. In particular, for n = N , the
image is an interval of lenght one which has endpoints 0 and 1, so that we have fN (I) = (0, 1).
Thus, since f is surjective and f(0, 1) = X, for any n > N , we have that fn(I) = X.

Part (b) Let U be a non empty open sets. Since it is non-empty, it contains a point x ∈ U
and since it is open it contains a ball B(x, ε) ⊂ U for some ε > 0. Thus, if N is an integer
such that 1/2N < ε, U contains a dyadic interval I of size 1/2N . Since, by part (a), there
exists N such that fN (I) = X, and fN (I) ⊂ fN (U), we have also fN (U) = X.

Part (c) Let us show that the f is topologically mixing. Let U, V be two non empty open
sets. By part (b), there exists N such that fN (U) = X. Thus, since f is surjective, for any
n ≥ N we also have fn(U) = X. Since V is non empty,

fn(I) ∩ V = X ∩ V = V 6= ∅,

which shows that
fn(U) ∩ V 6= ∅ for all n ≥ N.

and thus that f is topologically mixing.

Part (a) Let g = 4x(1− x) and f(x) = 2x mod 1. To show that the map

h(x) =
1

2
(1− cos(2πx))

gives a topological semi-conjugacy, we should prove that it is surjective, continuous and that
the following diagram commutes

[0, 1]
f−−−−→ [0, 1]yh yh

[0, 1]
g−−−−→ [0, 1]

Let us first verify that g ◦ h = h ◦ g. Let us compute g ◦ h:

g(h(x)) = 4h(x)(1− h(x)) = 2(1− cos(2πx))(1− 1

2
(1− cos(2πx)))

= 2(1− cos(2πx))
1

2
(1 + cos(2πx)) = 1− cos2(2πx).

Let us now compute h ◦ f , remarking that cos(2π(x+ k)) = cos(2πx), for any k ∈ N, so that
cos(2πf(x)) = cos(2π(2x)) and by using the trigonometric identity

cos 2θ = (cos θ)2 − (sin θ)2 = 2(cos θ)2 − 1,

so that

h(f(x)) =
1

2
(1−cos(2πf(x))) =

1

2
(1−cos(2π(2x))) =

1

2
(1−(2 cos2(2πx)−1)) = 1−cos2(2πx).

Thus g ◦ h = h ◦ f . Since x → cos(2πx) maps [0, 1] surjectively on [−1, 1] and the map
t→ (1− t)/2 is one to one from [−1, 1] to [0, 1], the map h is surjective and thus gives a semi-
conjugacy. Moreover h : [0, 1] → [0, 1] is the composition of the two functions x → cos(2πx)
(which is continuous since it is a trigonometric function) and the map t → (1 − t)/2 (which
is continuous since linear), thus, since composition of continuous functions is continuous, h is
continuous on [0, 1]. Thus, h is a topological semi-conjugacy.

Part (b) No, h is not a topological conjugacy. To be a topological conjugacy, h should be a
homeomorphism, that is it should be invertible (injective and bijective) and the inverse should
be continuous. One can easily see that h is not injective. Indeed, h is obtained composing
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the maps x → cos(2πx) which maps [0, 1] to [−1, 1] and the map t → (1 − t)/2 which maps
[−1, 1] to [0, 1]. While the latter is one to one since it is linear, the first map is not injective
but two two one. For example, since x → cos(2πx) is monotone and continuous on [0, 1/2]
and cos(2pi0) = 1 while cos(2pi1/2) = cosπ = 1, by the intermediate value thereom for any
0 < y < 1 is a 0 < x1 < 1/2 such that cos(2pix1) = y. Repeating for x→ cos(2πx) on [0, 1/2]
the same reasoning, there exists also a 0 < x2 < 1/2 such that cos(2pix2) = y. Such there
exists x1 6= x2 so that h(x1) = (1− y)/2 = h(x2).

Part (c) Yes, g it topologically transitive. We proved in the lectures that the doubling map
f is topologically transitive. Let x be such that O+

f (x) is dense. Consider y = h(x) and let

us show that O+
g (y) is dense, so that g is also topologically transitive. For any U ⊂ [0, 1]

non-empty open set, h−1(U) is an open set since h is continuous and it is non-empty since h
is surjective. By density of Of (x)+, there exists k ∈ N such that

fk(x) ∈ h−1(U) ⇔ h(fk(x)) ∈ U.

Since h is a semi-conjugacy, gk ◦h = h◦fk so gk(y) = gk(h(x)) = h(fk(x)) ∈ U . Hence O+
g (y)

intersects U . This holds for any non-empty open set U and thus shows that O+
g (y) is dense.

Part (d) No, g is NOT minimal. To see that it is enough to notice that g has many periodic
points. For example, if we consider x = 0, g(0) = 0, so it has fixed points. Since the space is
[0, 1], the orbit of any fixed point, which is finite, cannot be dense.

Solutions to Exercise 3.7

We are given that f : X → X and g : Y → Y are topological dynamical systems which

are topologically semi-conjugated by ψ : Y → X. Thus, ψ is continuous, surjective and
ψ ◦ g = f ◦ ψ, that is, the following diagram commutes:

Y
g−−−−→ Yyψ yψ

X
f−−−−→ X

Part (a) Let us use the conjugacy and the commutative diagram above to show that if g is
topologically mixing, then f is also topologically mixing. Let U, V be two open sets in X. We
need to show that there is N > 0 such that for any n ≥ N , fn(U)∩ V 6= ∅. Consider ψ−1(U)
and ψ−1(V ), that are open sets since ψ is continuous. If we know that g is topologically
mixing, there is N > 0 such that for any n ≥ N , gn(ψ−1(U))∩ψ−1(V ) 6= ∅. This means that
there exists x which belongs to the intersection, that is

x ∈ ψ−1(V ) and x ∈ gn(ψ−1(U)) ⇔ ψ(x) ∈ V and x = gn(y) for y ∈ ψ−1(U).

Thus, since , ψ ◦ g = f ◦ ψ, by induction we can also see that ψ ◦ gn = fn ◦ ψ so that

ψ(x) = ψ(gn(y)) = fn(ψ(y))

and since y ∈ ψ−1(U), ψ(y) = u ∈ U . So ψ(x) ∈ fn(U). Since we also have ψ(x) ∈ V , ψ(x)
belongs to the interesection fn(U) ∩ V , which shows that the intersection is non empty for
all n ≥ N .

Part (b) Let us show first that ψ(Pern(g)) ⊂ Pern(f). Take x ∈ Pern(g) and consider
ψ(x) ∈ Y . Since ψ · g = f · ψ, we also have ψ · gn = fn · ψ. Thus, fn(ψ(x)) = ψ(gn(x)) and
since gn(x) = x, we have fn(ψ(x)) = ψ(x), which shows that ψ(x) ∈ Pern(f).

Let us show now that if Per(g) are dense than also Per(f) is dense. Let U ⊂ Y be any
non-empty open set. Since ψ is continuous, ψ−1(U) ⊂ X is open and since ψ is surjective, it is
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non-empty. Since Per(g) is dense, there exists x ∈ Per(g)∩ψ−1(U). Say x ∈ Pern(g). Then,
from what we showed at the beginning, ψ(x) ∈ Pern(f) ⊂ Per(f) and ψ(x) ∈ ψ(ψ−1U) ⊂ U .
This shows that Per(f) intersects any non empty open set in Z and hence it is dense in Z.

Part (c) An example is Y = [0, 1)2 and g given by g(x, y) = (f(x), y + α mod 1), where α
is irrational. Let us show that Per(g) = ∅, so it clearly cannot be dense. If (x, y) ∈ Per(g),
gn(x, y) = (x, y) so we have fn(x) = x and Rnα(y) = y, so y should be a periodic point for
the irrational rotation. Recall that orbits of irrational rotations do not have periodic points,
since Rnα(x) = x would imply that α is rational (see lecture notes), so no periodic point for g
can exist.

Solutions to Exercise 3.8

Assume by contradiction that Pern(f) is infinite. Then, by compactness of X, there exists

a sequence (xn)n∈N ⊂ Pern(f) which converge to a point x of X. Fix any ν > 0. Since each
xn has period n and f is continuous (and hence also f2, . . . , fn−1 are continuous), one can
choose δ > 0 such that if d(x, y) < δ then d(f i(x), f i(y)) < ν for all 1 ≤ i < n. Choose n
sufficiently large so that d(xn, x) < δ. Then d(fk(xn), fk(x)) < ν for all k ∈ N. This shows
that ν is not an expansivity constant and thus that f is not expansive.

Alternatively, if one wants to use the definition of compactness via covers, let ν > 0 be the
expansivity constant of f . Choose δ > 0 as above so that if d(x, y) < δ then d(f i(x), f i(y)) < ν
for all 1 ≤ i < n. Consider now a cover of X with balls of radius δ/2. By compactness, there
exists a finite subcover. Let us show that each such ball can contain at most one periodic
point in Pern(f). If by contradiction two periodic points x, y ∈ Pern(f) both belonged to
the same ball of radius δ in the subcover, then since for any k ∈ N we can write k = in + j
where 0 ≤ j < n and fn(x) = x and fn(y) = y so also f in(x) = x and f in(y) = y, we would
have that

d(fk(x), fk(y)) = d(f j(f in(x)), f j(f in(y))) = d(f j(x), f j(y)) < δ, ∀k ∈ N.

This contradicts the definition of expansive. Thus, each ball of the subcover contains at most
one periodic point and since the number of balls is finite, also Pern(f) is finite.
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