Homework 4

Problem Set 4

HAND IN on MONDAY, October 30.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]

SET Exercises for Level 3: 4.1 and 4.7

SET Exercises for Level M: 4.1, 4.7 and 4.8.

Exercise 4.1. (SET) Let $T : \mathbb{T}^2 \to \mathbb{T}^2$ be the linear twist given by

$$T(x,y) = (x+y \mod 1, y).$$

Consider $T: X \to X$ as a topological dynamical system where $X = \mathbb{T}^2$ is a metric space with the natural distance d induced by the Euclidean distance.

- (a) Is T expansive? Justify your answer.
- (b) Does T have sensitive dependence on initial conditions? Justify your answer.

Exercise 4.2. Let $X = \mathbb{T}^2 = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ with the Euclidean distance d and let $F : X \to X$ be the baker map.

- (a) Is F expansive? Justify your answer.
- (b) Does F have sensitive dependence on initial conditions? Justify your answer.

* Exercise 4.3. Let $f : X \to X$ be a topological dynamical system on a metric space (X, d). Assume that f is topologically transitive and the set Per(f) of perodic points for f is dense in X. Conclude that f has sensitive dependence on initial conditions.

Exercise 4.4. Are the following maps *chaotic*? Justify your answers.

(a) the *linear twist* $T : \mathbb{T}^2 \to \mathbb{T}^2$, that is the map given by

 $T(x,y) = (x,y) \to (x+y \mod 1, y \mod 1).$

(*b) the logistic map g(x) = 4x(1-x) on X = [0, 1].

[Hint: for some parts, you can use the topological conjugacy with the tent map.]

Exercise 4.5. Let m > 1 be an integer and let $f : [0,1] \to [0,1]$ be $f(x) = mx \mod 1$. Let $\epsilon = 1/m^k$.

- (a) Construct an (n, ϵ) -separated set for f, prove that it is (n, ϵ) -separated and compute its cardinality;
- (b) Repeat point (a) for an (n, ϵ) -spanning set;
- (c) What is the topological entropy of f? Use part (a) and (b) to justify your answer.

Exercise 4.6. Let $X = \mathbb{T}^2$ and let $\underline{\alpha} = (\alpha_1, \alpha_2) \in \mathbb{R}^2$. Let $R_{\underline{\alpha}} : \mathbb{T}^2 \to \mathbb{T}^2$ be the translation on the torus given by

$$R_{\underline{\alpha}}(x,y) = (x + \alpha_1 \mod 1, \ y + \alpha_2 \mod 1)$$

One can show (and you can use) that $R_{\underline{\alpha}}$ is an isometry with respect to the distance d on \mathbb{T}^2 induced by the Euclidean distance. Consider \mathbb{T}^2 as a metric space with this distance.

- (a) Let $\epsilon = 1/N$. Construct a $(1, \epsilon)$ -spanning set S for R_{α} .
- (b) Prove that S is (n, ϵ) -spanning for any $n \in \mathbb{N}$.
- (c) What is the topological entropy of $R_{\underline{\alpha}}$? Justify your answer.

Exercise 4.7. (SET) Let $X = \mathbb{R}/\mathbb{Z}$. Fix an integer $k \ge 2$ and let $f : X \to X$ be the linear expanding map

$$f(x) = kx \mod 1.$$

Feel free to use that for each $x, y \in X$ we have

$$d(x,y) \le \frac{1}{2k} \quad \Rightarrow d(f(x), f(y)) \ge kd(x,y).$$

Let $F : \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ be an extension of f, where the semiconjugacy is given the projection $\pi(x, y) = x$.

(a) Show that for each $\epsilon = 1/k^l$ where $l \ge 2$ is an integer such that $\epsilon < \frac{1}{2k}$ the set

$$S_f = \left\{ \frac{i}{k^{n+l}}, \quad 0 \le i < k^{n+l} \right\} \subset [0,1)$$

is an (n, ϵ) -spanning set for the linear expanding map f.

(b) Let $\epsilon = 1/k^l$ where $l \ge 2$ is an integer such that $\epsilon < \frac{1}{2k}$. Show that the set

$$S = \left\{ \left(\frac{i}{k^{n-1+l}}, 0\right), \quad 0 \le i < k^{n-1+l} \right\} \subset [0,1) \times [0,1)$$

is an (n, ϵ) -separated set for the extension F.

Conclude that the topological entropy of F satisfies $h_{top}(F) \ge \log k$.

*(c) Let $\alpha \in \mathbb{R}$ and let $F: [0,1) \times [0,1) \to [0,1) \times [0,1)$ be the extension of f given by

 $F(x, y) = (f(x), y + \alpha \mod 1).$

Show that $h_{top}(F) \leq \log k$. Justify your arguments carefully.

*(d) Give an example of an extension $F: [0,1) \times [0,1) \rightarrow [0,1) \times [0,1)$ of f such that

$$h_{top}(F) > \log k$$

Justify your answer.

* Exercise 4.8. (SET for Level M) Let (X, d) be a *compact* metric space and let $f : X \to X$ be an *isometry*.

- (a) Show that for any $\epsilon > 0$, $n \in \mathbb{N}$, there there exists an (n, ϵ) -separated set.
- (b) Show that for any $\epsilon > 0$ there exists a *finite* $(1, \epsilon)$ -spanning set for f.
- (c) What is the topological entropy of f? Justify your answer.

Exercise 4.9. Let (X, d) be a metric space and $f : X \to X$ a topological dynamical system. Let $d_n = d_n^f$ be the distance used in the definition of topological entropy. Let m > 0 and f^m be the m^{th} -iterate of f.

- (a) Show that $d_n^{f^m}(x,y) \leq d_{mn}^f(x,y)$. Deduce that any (n,ϵ) -separated set for f^m is also (nm,ϵ) -separated set for f. Conclude that, if $Sep(n,\epsilon,g)$ denotes the maximal cardinality of an (n,ϵ) -separating set for g, we have $Sep(nm,\epsilon,f) \geq Sep(n,\epsilon,f^m)$.
- (b) Let us denote by $B_g(x, \epsilon, n) = \bigcap_{k=0}^{n-1} g^{-k}(B(g^k(x), \epsilon))$. Show that if δ is chosen so that $B(x, \delta) \subset B_f(x, \epsilon, m)$ for all $x \in X$, then

$$B_{f^m}(x,\delta,n) \subset B_f(x,\epsilon,nm).$$

Conclude that if $Span(n, \epsilon, g)$ denotes the minimal cardinality of an (n, ϵ) -spanning set for g we have $Span(nm, \epsilon, f) \leq Span(n, \delta, f^m)$.

(c) Show that $h_{top}(f^m) = mh_{top}(f)$.