Problem Set 5

HAND IN on MONDAY, November 6.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]

SET Exercises for Level 3: 5.3, 5.5 and 5.7

SET Exercises for Level M: 5.3, 5.5 and 5.8.
Exercise 5.1. Let $\Sigma_{N}=\{1, \ldots, N\}^{\mathbb{Z}}$ be the full two-sided shift space on N symbols. For $\rho>1$ consider the distance

$$
d_{\rho}(\underline{x}, \underline{y})=\sum_{k=-\infty}^{\infty} \frac{\left|x_{k}-y_{k}\right|}{\rho^{|k|}}, \quad \text { where } \quad \underline{x}=\left(x_{k}\right)_{k=-\infty}^{\infty}, \quad \underline{y}=\left(y_{k}\right)_{k=-\infty}^{\infty}
$$

Find a condition on ρ which guarantees that for any $\epsilon=1 / \rho^{n}$ we have

$$
\begin{equation*}
C_{-n, n}\left(x_{-n}, \ldots, x_{n}\right)=B_{d_{\rho}}\left(\underline{x}, \frac{1}{\rho^{n}}\right) \tag{1}
\end{equation*}
$$

Exercise 5.2. Let $\sigma: \Sigma_{N}^{+} \rightarrow \Sigma_{N}^{+}$on $\Sigma_{N}^{+}=\{1, \ldots, N\}^{\mathbb{N}}$ be the full one-sided shift on N symbols, where $\left(\Sigma_{N}^{+}, d\right)$ is a metric space with the distance d_{ρ} and $\rho>N-1$. Prove that σ is continuous
(a) using the ϵ / δ definition of continuity;
(b) using the equivalent definition of continuity via open sets.

Exercise 5.3. (SET) Consider the following transition matrices

$$
A_{1}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right), \quad A_{2}=\left(\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

(a) Draw the corresponding graphs $\mathscr{G}_{A_{i}}, i=1,2$, associated to them.
(b) Is A_{1} irreducible? and aperiodic? Justify your answers.
(c) Is A_{2} irreducible? and aperiodic? Justify your answers.

Exercise 5.4. Draw the graph of the map $f:[0,1] \rightarrow[0,1]$ given by:

$$
f(x)= \begin{cases}2 x & \text { if } 0 \leq x<\frac{1}{3} \tag{2}\\ 3 x-1 & \text { if } \frac{1}{3} \leq x<\frac{2}{3} \\ 2 x-1 & \text { if } \frac{2}{3} \leq x \leq 1\end{cases}
$$

(a) Choose a partition to use to code the map and find a transition matrix A such that the shift space Σ_{A}^{+}describes all possible itineraries coding orbits $\mathcal{O}_{f}^{+}(x)$.
(b) Is the shift $\sigma^{+}: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+} \subset\{1, \ldots, N\}^{\mathbb{Z}}$ that you found in (a) topologically transitive? Justify.
$\left({ }^{*}\right.$ c) Is f is topologically transitive? Explain.

Exercise 5.5. (SET) Let $\sigma: \Sigma_{N}^{+} \rightarrow \Sigma_{N}^{+}$be the full shift on $\Sigma_{N}^{+}=\{1, \ldots, N\}^{\mathbb{N}}$ symbols with the distance the distance

$$
d(\underline{x}, \underline{y})=\sum_{i=0}^{+\infty} \frac{\left|x_{i}-y_{i}\right|}{\rho^{i}}, \quad \rho>N
$$

(a) When is $\underline{a} \in \Sigma_{N}^{+}$a periodic point of period n for σ ? What is the cardinality of $\operatorname{Per}_{n}(\sigma)$?
(b) Fix a positive integer n and consider $0<\epsilon<1 / \rho$. Let $S=\operatorname{Per}_{n}(\sigma)$ be the set of periodic points of period n. Show that S is an (n, ϵ)-separated set.
(c) Fix positive integers n, k and let $\epsilon>1 / \rho^{k-1}$. Show that if $\underline{x}, \underline{y} \in C_{n+k}\left(a_{0}, \ldots, a_{n+k}\right) \in \mathscr{P}$, then $d_{n}(\underline{x}, \underline{y})<\epsilon$ for any ϵ. Deduce that if $S=\operatorname{Per}_{n+k}(\sigma)$ then S in (n, ϵ)-spanning.
[If you wish, you can use that admissible cylinders of the form $C_{0, m}\left(b_{0}, \ldots, b_{m}\right)$ are balls of radius $1 / \rho^{m}$ with respect to d.]
(d) Use the previous points to show that $h_{t o p}(\sigma)=\log N$.

Exercise 5.6. Let d_{ρ} be a metric on Σ_{N}^{+}such that (1) holds and let $\Sigma_{A}^{+} \subset \Sigma_{N}^{+}$be the subshift space associated to an $N \times N$ transition matrix.
(a) Prove that if A is irreducible the full one-sided shift $\sigma^{+}: \Sigma_{N}^{+} \rightarrow \Sigma_{N}^{+}$is topologically transitive.
(n) Prove that if A is aperiodic the full one-sided shift $\sigma^{+}: \Sigma_{N}^{+} \rightarrow \Sigma_{N}^{+}$is topologically mixing.

* Exercise 5.7. (SET for Level 3) Let $\sigma: \Sigma_{N}^{+} \rightarrow \Sigma_{N}^{+}$be the full one-sided shift on N symbols. One can show (see Exercise 5.2) that σ is a topological dynamical system on the metric space $\left(\Sigma_{N}^{+}, d\right)$ where $d=d_{\rho}$ is the distance in Exercise. Assume that $\rho>N$ (so that for any $\epsilon=1 / \rho^{n}$ we have that $\left.B_{d_{\rho}}\left(\underline{a}, 1 / \rho^{n}\right)=C_{0, n}\left(a_{0}, \ldots, a_{n}\right)\right)$.

Is $\sigma: \Sigma_{N}^{+} \rightarrow=\Sigma_{N}^{+}$chaotic? Justify your answer in detail.

* Exercise 5.8. (SET for Level M) Let $\Sigma_{N}^{+}=\{1, \ldots, N\}^{\mathbb{N}}$ be the full shift space on N symbols and let $\Sigma_{A}^{+} \subset \Sigma_{N}^{+}$be the subshift space associated to an $N \times N$ irreducible transition matrix. Consider the distance $d=d_{\rho}$ defined in class and assume that $\rho>N$ (so that for any $\epsilon=1 / \rho^{n}$ we have that $\left.B_{d_{\rho}}\left(\underline{a}, 1 / \rho^{n}\right)=C_{0, n}\left(a_{0}, \ldots, a_{n}\right)\right)$.

Let $\sigma: \Sigma_{A}^{+} \rightarrow=\Sigma_{A}^{+}$be the associated topological Markov chain. One can show (see Exercise 5.2) that σ is a topological dynamical system on the metric space $\left(\Sigma_{N}^{+}, d\right)$.

Is $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$chaotic? Justify your answer in detail.

