Problem Set 7

HAND IN on MONDAY, November 20.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]
SET Exercises for Level 3: 1(a)-(b), 3, 4(a)
SET Exercises for Level M: 1(a)'-(b)', 3, 4(b)
Exercise 7.1. (SET) Consider the linear twist $t: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ on the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$, given by

$$
t(x, y)=(x+y \quad \bmod 1, y)
$$

(a) (for Level 3) Show that for any rectangle $R=[a, b] \times[c, d] \subset \mathbb{T}^{2}$ all points $(x, y) \in R$ return to R under t.
[Hint: consider separately the two cases y rational and y irrational.]
(a)' (for Level M) Show that for any rectangle $R=[a, b] \times[c, d] \subset \mathbb{T}^{2}$ all points $(x, y) \in R$ return to R under t infinitely often.
[Hint: consider separately the two cases y rational and y irrational.]
Let $X=\mathbb{R}^{2}$ and consider now the linear map $L: X \rightarrow X$ given by

$$
\begin{equation*}
L(x, y)=(x+y, y) \tag{1}
\end{equation*}
$$

(b) (for Level 3) Show that the conclusion of the Strong Form of Poincaré Recurrence Theorem fails for L and the 2-dimensional Lebesgue measure λ.
Which assumption of Poincaré Recurrence Theorem is not satisfied?
(b)' (for Level M) Find a set for which the conclusion of the Weak form of Poincaré Recurrence Theorem holds but the Strong form of Poincaré Recurrence Theorem fails for T and the 2-dimensional Lebesgue measure λ.
Which assumption of Poincaré Recurrence Theorem is not satisfied?

* Exercise 7.2. Let (X, \mathscr{B}, μ) be a finite measured space. A transformation $T: X \rightarrow X$ is called incompressible if for any $A \in \mathscr{B}$

$$
T^{-1}(A) \subset A \quad \Rightarrow \quad \mu\left(T^{-1}(A)\right)=\mu(A)
$$

Prove and use the following steps to give a proof that if T is incompressible the strong form of Poincaré recurrence Theorem holds:

1. The set $E \subset A$ of points in $A \in \mathscr{B}$ which are infinitely recurrent can be written as

$$
E=A \cap \bigcap_{n \in \mathbb{N}} E_{n}, \quad \text { where } \quad E_{n}=\bigcup_{k \geq n} T^{-k} A
$$

2. The sets E_{n} are nested, that is $E_{n+1} \subset E_{n}$, and one has $\mu\left(\cap_{n \in \mathbb{N}} E_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)$;
[Hint: write $\mu\left(E_{0} \backslash \cap_{n \in \mathbb{N}} E_{n}\right)$ as a telescopic series using the disjoint sets $E_{n} \backslash E_{n+1}$.]
3. Show that $\mu\left(T^{-1}\left(E_{n}\right)\right)=\mu\left(E_{n+1}\right)$. Deduce that $\lim _{n \rightarrow \infty} \mu\left(E_{n}\right)=\mu\left(E_{0}\right)$.

Conclude by using the remark that $A \backslash \cap_{n \in \mathbb{N}} E_{n} \subset E_{0} \backslash \cap_{n \in \mathbb{N}} E_{n}$.
Exercise 7.3. (SET) Let (X, \mathscr{B}) be a measurable space and $T: X \rightarrow X$ be a transformation.
(a) Check that if μ_{1} and μ_{2} are probability measures on (X, \mathscr{B}), then any linear combination

$$
\mu=\lambda \mu_{1}+(1-\lambda) \mu_{2}, \quad \text { where } \quad 0 \leq \lambda \leq 1
$$

is again a probability measure (check both that it is a measure and a probability measure).
(b) Let μ be a measure on (X, \mathscr{B}) preserved by T. Let $A \in \mathscr{B}$ be a measurable set with positive measure $\mu(A)>0$. Check that by setting

$$
\mu_{1}(B)=\frac{\mu(A \cap B)}{\mu(A)} \quad \text { for all } B \in \mathscr{B}, \quad \mu_{2}(B)=\frac{\mu\left(A^{c} \cap B\right)}{\mu\left(A^{c}\right)} \quad \text { for all } B \in \mathscr{B}
$$

(where $A^{c}=X \backslash A$ denotes the complement of A in X) one defines two measures μ_{1} and μ_{2}. Check that if A is invariant under T, then both μ_{1} and μ_{2} are invariant under T.
(c) Conclude that if a probability measure μ invariant under T indecomposable, which means that it cannot be written as strict linear combination of two invariant probability measures for T of the form

$$
\mu=\lambda \mu_{1}+(1-\lambda) \mu_{2}, \quad \text { where } \quad 0<\lambda<1
$$

then it is ergodic.

Exercise 7.4. (SET)

(a) (for Level 3) Let $X=[0,1)$ be the interval with endpoints identifyed, λ the 1-dimensional Lebesgue measure and $R_{\alpha}: x \mapsto x+\alpha \bmod 1$ be a rational rotation by $\alpha=p / q \in \mathbb{Q}$. Show that R_{α} is not ergodic with respect to λ by showing that there exists an invariant function $f: X \rightarrow \mathbb{R}$ for R_{α} which is not constant λ-almost everywhere.
[Hint: try to use some trigonometric function.]
(b) (for Level M) Let $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{2}$ and $R_{\underline{\alpha}}: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ be the translation on the torus given by

$$
R_{\underline{\alpha}}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha_{1} \bmod 1, x_{2}+\alpha_{2} \quad \bmod 1\right) .
$$

Show that if there exists $\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ such that $\underline{n} \neq(0,0)$ and $\langle\underline{n}, \underline{\alpha}\rangle \in \mathbb{Z}$, then $R_{\underline{\alpha}}$ is not ergodic.
[Hint: Look for a non-constant invariant trigonometric function $f: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{C}$. You can then use it to find a real-valued non-constant invariant function.]

