Problem Set 7

HAND IN on MONDAY, November 20.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]

SET Exercises for Level 3: 1(a)–(b), 3, 4(a)

SET Exercises for Level M: 1(a)'-(b)', 3, 4(b)

Exercise 7.1. (SET) Consider the linear twist $t : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ on the torus $\mathbb{R}^2/\mathbb{Z}^2$, given by

$$t(x,y) = (x+y \mod 1, y).$$

(a) (for Level 3) Show that for any rectangle $R = [a, b] \times [c, d] \subset \mathbb{T}^2$ all points $(x, y) \in R$ return to R under t.

[*Hint*: consider separately the two cases y rational and y irrational.]

(a)' (for Level M) Show that for any rectangle $R = [a, b] \times [c, d] \subset \mathbb{T}^2$ all points $(x, y) \in R$ return to R under t infinitely often.

[*Hint*: consider separately the two cases y rational and y irrational.]

Let $X = \mathbb{R}^2$ and consider now the linear map $L: X \to X$ given by

$$L(x,y) = (x+y,y).$$
 (1)

- (b) (for Level 3) Show that the conclusion of the Strong Form of Poincaré Recurrence Theorem fails for L and the 2-dimensional Lebesgue measure λ. Which assumption of Poincaré Recurrence Theorem is not satisfied?
- (b)' (for Level M) Find a set for which the conclusion of the Weak form of Poincaré Recurrence Theorem holds but the Strong form of Poincaré Recurrence Theorem *fails* for T and the 2-dimensional Lebesgue measure λ .

Which assumption of Poincaré Recurrence Theorem is not satisfied?

* Exercise 7.2. Let (X, \mathcal{B}, μ) be a *finite* measured space. A transformation $T : X \to X$ is called *incompressible* if for any $A \in \mathcal{B}$

$$T^{-1}(A) \subset A \quad \Rightarrow \quad \mu(T^{-1}(A)) = \mu(A).$$

Prove and use the following steps to give a proof that if T is incompressible the strong form of Poincaré recurrence Theorem holds:

1. The set $E \subset A$ of points in $A \in \mathscr{B}$ which are infinitely recurrent can be written as

$$E = A \cap \bigcap_{n \in \mathbb{N}} E_n, \quad \text{where} \quad E_n = \bigcup_{k \ge n} T^{-k} A;$$

- 2. The sets E_n are nested, that is $E_{n+1} \subset E_n$, and one has $\mu(\bigcap_{n \in \mathbb{N}} E_n) = \lim_{n \to \infty} \mu(E_n)$; [*Hint*: write $\mu(E_0 \setminus \bigcap_{n \in \mathbb{N}} E_n)$ as a telescopic series using the disjoint sets $E_n \setminus E_{n+1}$.]
- 3. Show that $\mu(T^{-1}(E_n)) = \mu(E_{n+1})$. Deduce that $\lim_{n\to\infty} \mu(E_n) = \mu(E_0)$. Conclude by using the remark that $A \setminus \bigcap_{n \in \mathbb{N}} E_n \subset E_0 \setminus \bigcap_{n \in \mathbb{N}} E_n$.

Exercise 7.3. (SET) Let (X, \mathscr{B}) be a measurable space and $T: X \to X$ be a transformation.

(a) Check that if μ_1 and μ_2 are probability measures on (X, \mathscr{B}) , then any linear combination

 $\mu = \lambda \mu_1 + (1 - \lambda) \mu_2$, where $0 \le \lambda \le 1$,

is again a probability measure (check both that it is a measure and a probability measure).

(b) Let μ be a measure on (X, \mathscr{B}) preserved by T. Let $A \in \mathscr{B}$ be a measurable set with positive measure $\mu(A) > 0$. Check that by setting

$$\mu_1(B) = \frac{\mu(A \cap B)}{\mu(A)} \quad \text{for all } B \in \mathscr{B}, \qquad \mu_2(B) = \frac{\mu(A^c \cap B)}{\mu(A^c)} \quad \text{for all } B \in \mathscr{B},$$

(where $A^c = X \setminus A$ denotes the complement of A in X) one defines two measures μ_1 and μ_2 . Check that if A is *invariant* under T, then both μ_1 and μ_2 are invariant under T.

(c) Conclude that if a probability measure μ invariant under *T* indecomposable, which means that it cannot be written as strict linear combination of two invariant probability measures for *T* of the form

$$\mu = \lambda \mu_1 + (1 - \lambda)\mu_2, \quad \text{where} \quad 0 < \lambda < 1,$$

then it is *ergodic*.

Exercise 7.4. (SET)

(a) (for Level 3) Let X = [0, 1) be the interval with endpoints identifyed, λ the 1-dimensional Lebesgue measure and $R_{\alpha} : x \mapsto x + \alpha \mod 1$ be a *rational* rotation by $\alpha = p/q \in \mathbb{Q}$. Show that R_{α} is *not* ergodic with respect to λ by showing that there exists an invariant function $f : X \to \mathbb{R}$ for R_{α} which is not constant λ -almost everywhere.

[*Hint*: try to use some trigonometric function.]

(b) (for Level M) Let $\underline{\alpha} = (\alpha_1, \alpha_2) \in \mathbb{R}^2$ and $R_{\underline{\alpha}} : \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{R}^2 / \mathbb{Z}^2$ be the translation on the torus given by

 $R_{\underline{\alpha}}(x_1, x_2) = (x_1 + \alpha_1 \mod 1, x_2 + \alpha_2 \mod 1).$

Show that if there exists $\underline{n} = (n_1, n_2) \in \mathbb{Z}^2$ such that $\underline{n} \neq (0, 0)$ and $\langle \underline{n}, \underline{\alpha} \rangle \in \mathbb{Z}$, then $R_{\underline{\alpha}}$ is not ergodic.

[*Hint*: Look for a non-constant invariant trigonometric function $f : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{C}$. You can then use it to find a real-valued non-constant invariant function.]