
Dynamical Systems and Ergodic Theory Solutions/Feedback for Homework 7

Solutions to Problem Set 7

Feedback

Problem 1(a)(a’) was mostly done well. Some of the proposed arguments didn’t quite work when
the starting point is at the boundary of the rectangle.

Most people did Problem 1(b) correctly. A few people had issues with Problem 1(b’). Suitably
chosen rectangles give examples of such sets (see solutions).

Problem 3 was done well with only some minor mistakes and gaps in the solutions. In part (c),
one needs to check that the set Ac is invariant when A is invariant. Part (d) could be done using
a proof by contradiction (or by proving the cotrapositive statement). Several people were confused
about what the correct cotrapositive statement is.

For a solution of Problem 4, no knowledge of Fourier series is required, and examples of non-
constant invariant functions can be constructed using basic trigonometric functions e2πiqx or e2πi〈n,x〉

for suitably chosen q ∈ N and n ∈ Z2. It is important to keep in mind that we need to construct a
real-valued invariant functions to apply the ergodicity criterion.

Solutions

Solution to Exercise 1

Part (a) Let X = T2 and let t : T2 → T2 be the toral automorphism given by A, that is

t(x, y) = (x+ y mod 1, y).

Let us show that for any rectangle R = [a, b]× [c, d] ⊂ T2 all points (x, y) ∈ R return to R. Remark
that t sends horizontal lines [0, 1]×{y} to themselves (since the second coordinate is fixed) and acts
on each horizontal line as a rotation:

t(x, y) = (x+ y mod 1, y) = (Ry(x), y).

Let us consider two separate cases. In the first case, if y ∈ [0, 1]\Q is rational, say y = p/q, then the
orbit of any x is periodic of period q. Thus, if (x, y) ∈ [a, b]× [c, d], Rqy(c) = x and

tq(x, y) = (Rqy(x)) = (x, y) ∈ [a, b]× [c, d],

so any (x, y) ∈ [a, b]× [c, d] returns to [a, b]× [c, d] after q iterates.

The other case is when y ∈ [0, 1]\Q is irrational, we know that Ry is minimal, so every orbit
is dense. In particular, for any x ∈ [a, b], O+

Ry
(x) is dense, thus it will visit any non empty open

interval. In particular, there exists k such that Ry
k(x) belongs to the open interval (a, b), thus

tk(x, y) ∈ R and the orbit O+
t (x, y) returns to R.

Part (a’) Let X = T2 and let t : T2 → T2 be the toral automorphism given by A, that is

t(x, y) = (x+ y mod 1, y).

Let us show that for any rectangle R = [a, b]× [c, d] ⊂ T2 all points (x, y) ∈ R are infinitely recurrent
to R. Remark that T sends horizontal lines [0, 1]× {y} to themselves (since the second coordinate
is fixed) and acts on each horizontal line as a rotation:

t(x, y) = (x+ y mod 1, y) = (Ry(x), y).
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Let us consider two separate cases. In the first case, if y ∈ [0, 1]\Q is rational, say y = p/q, then the
orbit of any x is periodic of period q. Thus, if (x, y) ∈ [a, b]× [c, d], Rkqy (x) = x for any k ∈ N and

T kq(x, y) = (Rkqy (x), y) = (x, y) ∈ [a, b]× [c, d] for all k ∈ N.

This shows that any (x, y) ∈ [a, b]× [c, d] returns to [a, b]× [c, d] infinitely often.

The other case is when y ∈ [0, 1]\Q is irrational, we know that Ry is minimal, so every orbit
is dense. In particular, for any x ∈ [a, b], O+

Ry
(x) is dense. This implies that y returns to [a, b]

infinitely often. By induction, if we showed that y returns to [a, b] n times and Rkny (x) ∈ [a, b] is

the kth return, consider any open interval I inside [c, d] which does not contain any point of the

form Rky(x) with 0 ≤ k ≤ kn. Then by density of O+
Ry

(x), there exists a point R
kn+1
y (z) ∈ I and by

definition of I we must have kn+1 > kn, so we found a new return. Thus

tkn(x, y) = (Rkny (x), y) ∈ [a, b]× [c, d] for all k ∈ N.

[Remark that if λ is the 2−dimensional Lebesgue measure, here λ(X) = λ(T2) = 1, so T preserves
the probability measure λ. Thus, Poincaré Recurrence theorem does apply to T but only gives that
almost-every point (x, y) ∈ [a, b] × [c, d] is recurrent, while in this special case we showed that a
stronger conclusion holds.]

Part (b) Let X = R2 and let L : R2 → R2 be the linear transformation

L(x, y) = (x+ y, x).

Remark that t preserves horizontal lines and on each horizontal line {x}×R it acts as a translation.
We want to show the conclusion of the Strong Form of Poincaré Recurrence Theorem fails for L.
Since

Tn(x, y) = (x+ ny, y),

if y 6= 0, then x+ny →∞ as n→∞. Thus, for any (x, y) with y 6= 0 (that is, not on the horizontal
axis R×{0}), Tn(x, y) escapes. To show that the statement of Poincaré Recurrence Theorem fails, we
want to exhibit a set of positive measure for which it is not true that almost-every point is recurrent.
Consider for example any bounded interval [a, b] ⊂ R and consider the set B = [a, b]×R\{0}. Then
B is clearly a set of positive (actually infinite) 2−dimensional Lebesgue measure, but every point
in B eventually leaves B and never returns. This shows that T does not satisfy the conclusion of
Poincaré Recurrence Theorem.

The assumption of Poincaré Recurrence Theorem which fails is finiteness of the measure. Remark
indeed that L preserves the 2−dimensional Lebesgue measure on R2, which is not finite, since
λ(R2) = +∞.

Part (b’) Let X = R2 and let L : R2 → R2 be the linear transformation

L(x, y) = (x+ y, x).

Remark that t preserves horizontal lines and on each horizontal line {x}×R it acts as a translation.
We want to find a set for which the conclusion of the Weak Form of Poincaré Recurrence Theorem
holds even though the Strong Form of Poincaré Recurrence fails for L. Since

Tn(x, y) = (x+ ny, y),
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if y 6= 0, then x+ny →∞ as n→∞. Thus, for any (x, y) with y 6= 0 (that is, not on the horizontal
axis R × {0}), Tn(x, y) escapes. On the other hand, if y = 0, Tn(x, 0) = (x, 0) so that horizonal
axes is fixed and if y is small, then points Tn(x, y) escape very slowly.

Let us choose for example as a set the rectangle B = (0, 1)× (0, ε), for some fixed ε > 0. Then for
example all the points in the rectangle B′ = (0, 1− ε)× (0, ε) ⊂ B return to B, since if (x, y) ∈ B′,
then 0 < x < 1− ε and 0 < y < ε so 0 < x+ y < 1 and T (x, y) = (x+ y, y) ∈ B.
[The set of points which return in one step is actually larger than B′ and consists more precisely
of the intersection B ∩ T−1(B) which can be calculating remarking that T−1(B) is a parallelogram
with vertices (0, 0), (−ε, ε), (1, ε), (1− ε, ε).]

On the other hand, since
Tn(x, y) = (x+ ny, y),

if y 6= 0, then x+ ny →∞ as n→∞. Thus, for any (x, y) ∈ B′, since y 6= 0 Tn(x, y) escapes. This
shows that B contains a set of positive measure of points, that is for example B′, which return to
B but are not infinitely recurrent.

The assumption of Poincaré Recurrence Theorem which fails is finiteness of the measure. Remark
indeed that L preserves the 2−dimensional Lebesgue measure on R2, which is not finite, since
λ(R2) = +∞.

Solution to Exercise 3

Part (a) Let (X,B) be a measurable space and T : X → X be a transformation. Let µ1 and µ2

are probability measures on (X,B). Let us show that any linear combination

µ = λµ1 + (1− λ)µ2, where 0 ≤ λ ≤ 1

is a probability measure. Clearly µ(∅) = λµ1(∅) + (1 − λ)µ2(∅) = 0 since µ1(∅) = µ2(∅) = 0 by
definition of measure.

If for n ∈ N the sets An ∈ B are measurable disjoint sets (do not forget disjoint!), since both µ1

and µ2 are countably additive,

µ

(⋃
n∈N

An

)
= λµ1

(⋃
n∈N

An

)
+ (1− λ)µ2

(⋃
n∈N

An

)
= λ

∑
n∈N

µ1 (An) + (1− λ)
∑
n∈N

µ2 (An)

=
∑
n∈N

(λµ1(An) + (1− λ)µ2(An)) =
∑
n∈N

µ(An),

which shows that also µ is countably additive and thus it is a measure. Moreover it is a probability
measure since µ1(X) = µ2(X) = 1 so

µ(X) = λµ1(X) + (1− λ)µ2(X) = λ+ (1− λ) = 1.

Part (b) Let µ be a measure on (X,B) preserved by T . Let A ∈ B be a measurable set with
positive measure µ(A) > 0 and let

µ1(B) =
µ(A ∩B)

µ(A)
for all B ∈ B.

Let us check that µ1 is a measure. Clearly, since µ(A ∩ ∅) = µ(∅) = 0, µ1(∅) = 0.
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If An ∈ B, n ∈ N, are measurable disjoint sets, since µ is countably additive, we have

µ1

(⋃
n∈N

An

)
=
µ
(
A ∩

⋃
n∈NAn

)
µ(A)

=
µ
(⋃

n∈N(A ∩An)
)

µ(A)

=

∑
n∈N µ (A ∩An)

µ(A)
=
∑
n∈N

µ (A ∩An)

µ(A)
=
∑
n∈N

µ1(An),

which shows that also µ1 is countably additive and thus it is a measure. Moreover it is a probability
measure since A ⊂ X implies that A ∩X = A, so

µ1(X) =
µ(A ∩X)

µ(A)
=
µ(A)

µ(A)
= 1.

Similarly, if we set

µ2(B) =
µ(Ac ∩B)

µ(Ac)
for all B ∈ B,

also µ2 is a probability measure, since since µ(Ac ∩ ∅) = µ(∅) = 0, mu2(∅) = 0.
If An ∈ B, n ∈ N, are measurable disjoint sets, since µ is countably additive, we have

µ2

(⋃
n∈N

An

)
=
µ
(
Ac ∩

⋃
n∈NAn

)
µ(Ac)

=
µ
(⋃

n∈N(Ac ∩An)
)

µ(Ac)
=
∑
n∈N

µ (Ac ∩An)

µ(Ac)
=
∑
n∈N

µ2(An),

so mu2 is a measure. It is a a probability measure since

µ2(X) =
µ(Ac ∩X)

µ(Ac)
=
µ(Ac)

µ(Ac)
= 1.

Assume now that A is invariant under T . Let us show that both µ1 and µ2 are invariant under
T . Since A is invariant, T−1(A) = A, so for any B ∈ B we have

µ1(T−1(B)) =
µ(A ∩ T−1(B))

µ(A)
=
µ(T−1(A) ∩ T−1(B))

µ(A)
=
µ(T−1(A ∩B)

µ(T−1(A))
, (1)

where we used that T−1(A ∩B) = T−1(A) ∩ T−1(B).

[ To prove that T−1(A∩B) = T−1(A)∩T−1(B), remark that x ∈ T−1(A∩B) iff T (x) ∈ A∩B, that is
iff T (x) ∈ A and T (x) ∈ B, so iff x ∈ T−1(A) and x ∈ T−1(B) which means x ∈ T−1(A)∩ T−1(B).]

Since µ is invariant under T , applying invariance to the set T−1(A ∩B), we have

µ(T−1(A ∩B))

µ(A)
=
µ(A ∩B)

µ(A)
= µ1(B), (2)

so combining (1) and (2) we proved that µ1(T−1(B)) = µ1(B) for any B ∈ B and that µ1 is
T−invariant.

If A is invariant, also Ac is invariant, that is T−1(Ac) = Ac.

[Indeed, x ∈ T−1(Ac) iff T (x) ∈ Ac, that is iff x /∈ A, but since T−1(A) = A, x /∈ A iff x ∈ Ac. So
x ∈ T−1(Ac) iff x ∈ Ac, that is T−1(Ac) = Ac.]
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Reasoning as above and using T−1(Ac) = Ac together with invariance of µ this gives

µ2(T−1(B)) =
µ(Ac ∩ T−1(B))

µ(Ac)
=
µ(T−1(Ac) ∩ T−1(B))

µ(Ac)
=
µ(T−1(Ac ∩B))

µ(Ac)
=
µ(Ac ∩B)

µ(Ac)
= µ2(B),

for any B ∈ B, so also µ2 is invariant under T .

Part (c) Let us show that if probability measure µ invariant under T cannot be written as strict
linear combination of two invariant probability measures for T , that is as

µ = λµ1 + (1− λ)µ2, where 0 < λ < 1, µ1 6= µ2, (3)

then it is ergodic. Let us prove it by contradiction. If T were not ergodic, there would exist an
invariant set A with measure 0 < µ(A) < 1. Then, if µ1 and µ2 are the measures defined as in Part
(ii) by restricting µ to A and X\A and renormalizing, both µ1 and µ2 are invariant probability
measures, as we showed in Part (ii). Moreover, since for any B ∈ B we can express B as a disjoint
union

B = (B ∩A) ∪ (B ∩Ac) ⇒ µ(B) = µ(B ∩A) + µ(B ∩Ac)

(recall to remark that the union is disjoint to use additivity of a measure). Thus if we set

λ = µ(A) ⇒ 1− λ = µ(X)− µ(A) = µ(X\A),

we have

µ(B) = µ(A)
µ(B ∩A)

µ(A)
+ µ(Ac)

µ(B ∩Ac)
µ(Ac)

= λµ1(B) + (1− λ)µ2(B).

Since this holds for any B ∈ B, it shows that µ = λµ1 + (1 − λ)µ2. This gives an expression of µ
as linear combinations of two invariant probability measures. Let us check that is it strict and non
trivial. We have 0 < λ < 1 since λ = µ(A) and 0 < µ(A) < 1. Let us also check that µ1 6= µ2.
To show that two measures are different it is enough to find a set to which they assign a different
measure. If we take for example B = A,

µ1(A) =
µ(A ∩A)

µ(A)
= 1, µ2(A) =

µ(A ∩Ac)
µ(Ac)

= 0, ⇒ µ1(A) 6= µ2(A) ⇒ µ1 6= µ2.

Thus, we expressed µ as a linear combination as in (3), which is contradiction. We conclude that µ
is ergodic.

Solution to Exercise 4

Part (a) Let Rα : R/Z→ R/Z be a rational rotation, where α = p/q and p, q are coprime. To show
that Rα is not ergodic, it is enough to find a non-constant invariant function. Consider for example
the function

f(x) = sin(2πqx).

Clearly f is a non constant function. We have

f(Rα(x)) = sin(2πq

(
x+

p

q

)
) = sin(2π(qx+ p)) = sin(2πqx),

which shows that f ◦ T = f , so f is invariant.
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Part (b) Assume now that there exists n = (n1, n2) ∈ Z2 such that n 6= (0, 0) and < n,α >∈ Z,
show that Rα is not ergodic. Let us show that in this case Rα is not ergodic by constructing an
invariant function. If n = (n1, n2) ∈ Z2 is as above, consider the function f : T2 → C given by

g(x1, x2) = e2πi<n,x>.

Since n 6= (0, 0), g is not constant. Let us check that from the assumption that < n,α >∈ Z it
follows that g is invariant:

g(Rα(x)) = e2πi<n,x+α−k> (where k = (k1, k2) ∈ Z2 are the integer parts of α1x1 and α2x2)

= e2πi<n,α>e2πi<n,x>e−2πi<n,k>

= e2πi<n,α>e2πi<n,x> (since < n, k >∈ Z implies e−2πi<n,k> = 1)

= e2πi<n,x> = g(x) (since < n,α >∈ Z implies e2πi<n,α> = 1).

Remark that this function has complex values. To produce a real-valued invariant function f : T2 →
R one can take the real part

f(x1, x2) = <e2πi<n,x> = cos(2π < n, x >) = cos(2π(n1x1 + n2x2).

Clearly, if g ◦Rα(x) = g(x) as complex numbers, also <(g ◦Rα(x)) = <g(x), so f is also invariant.
[Clearly one can also consider the imaginary part.]
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