Solutions to Problem Set 7

Feedback

Problem 1 (a) (a^{\prime}) was mostly done well. Some of the proposed arguments didn't quite work when the starting point is at the boundary of the rectangle.

Most people did Problem 1(b) correctly. A few people had issues with Problem 1(b'). Suitably chosen rectangles give examples of such sets (see solutions).

Problem 3 was done well with only some minor mistakes and gaps in the solutions. In part (c), one needs to check that the set A^{c} is invariant when A is invariant. Part (d) could be done using a proof by contradiction (or by proving the cotrapositive statement). Several people were confused about what the correct cotrapositive statement is.

For a solution of Problem 4, no knowledge of Fourier series is required, and examples of nonconstant invariant functions can be constructed using basic trigonometric functions $e^{2 \pi i q x}$ or $e^{2 \pi i\langle n, x\rangle}$ for suitably chosen $q \in \mathbb{N}$ and $n \in \mathbb{Z}^{2}$. It is important to keep in mind that we need to construct a real-valued invariant functions to apply the ergodicity criterion.

Solutions

Solution to Exercise 1

Part (a) Let $X=\mathbb{T}^{2}$ and let $t: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be the toral automorphism given by A, that is

$$
t(x, y)=(x+y \bmod 1, y)
$$

Let us show that for any rectangle $R=[a, b] \times[c, d] \subset \mathbb{T}^{2}$ all points $(x, y) \in R$ return to R. Remark that t sends horizontal lines $[0,1] \times\{y\}$ to themselves (since the second coordinate is fixed) and acts on each horizontal line as a rotation:

$$
t(x, y)=(x+y \bmod 1, y)=\left(R_{y}(x), y\right)
$$

Let us consider two separate cases. In the first case, if $y \in[0,1] \backslash \mathbb{Q}$ is rational, say $y=p / q$, then the orbit of any x is periodic of period q. Thus, if $(x, y) \in[a, b] \times[c, d], R_{y}^{q}(c)=x$ and

$$
t^{q}(x, y)=\left(R_{y}^{q}(x)\right)=(x, y) \in[a, b] \times[c, d]
$$

so any $(x, y) \in[a, b] \times[c, d]$ returns to $[a, b] \times[c, d]$ after q iterates.
The other case is when $y \in[0,1] \backslash \mathbb{Q}$ is irrational, we know that R_{y} is minimal, so every orbit is dense. In particular, for any $x \in[a, b], \mathcal{O}_{R_{y}}^{+}(x)$ is dense, thus it will visit any non empty open interval. In particular, there exists k such that $R_{y}{ }^{k}(x)$ belongs to the open interval (a, b), thus $t^{k}(x, y) \in R$ and the orbit $\mathscr{O}_{t}^{+}(x, y)$ returns to R.
Part (a') Let $X=\mathbb{T}^{2}$ and let $t: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be the toral automorphism given by A, that is

$$
t(x, y)=(x+y \bmod 1, y)
$$

Let us show that for any rectangle $R=[a, b] \times[c, d] \subset \mathbb{T}^{2}$ all points $(x, y) \in R$ are infinitely recurrent to R. Remark that T sends horizontal lines $[0,1] \times\{y\}$ to themselves (since the second coordinate is fixed) and acts on each horizontal line as a rotation:

$$
t(x, y)=(x+y \bmod 1, y)=\left(R_{y}(x), y\right)
$$

Dynamical Systems and Ergodic Theory Solutions/Feedback for Homework 7

Let us consider two separate cases. In the first case, if $y \in[0,1] \backslash \mathbb{Q}$ is rational, say $y=p / q$, then the orbit of any x is periodic of period q. Thus, if $(x, y) \in[a, b] \times[c, d], R_{y}^{k q}(x)=x$ for any $k \in \mathbb{N}$ and

$$
T^{k q}(x, y)=\left(R_{y}^{k q}(x), y\right)=(x, y) \in[a, b] \times[c, d] \quad \text { for all } k \in \mathbb{N}
$$

This shows that any $(x, y) \in[a, b] \times[c, d]$ returns to $[a, b] \times[c, d]$ infinitely often.
The other case is when $y \in[0,1] \backslash \mathbb{Q}$ is irrational, we know that R_{y} is minimal, so every orbit is dense. In particular, for any $x \in[a, b], \mathcal{O}_{R_{y}}^{+}(x)$ is dense. This implies that y returns to $[a, b]$ infinitely often. By induction, if we showed that y returns to $[a, b] n$ times and $R_{y}^{k_{n}}(x) \in[a, b]$ is the $k^{t h}$ return, consider any open interval I inside $[c, d]$ which does not contain any point of the form $R_{y}^{k}(x)$ with $0 \leq k \leq k_{n}$. Then by density of $\mathcal{O}_{R_{y}}^{+}(x)$, there exists a point $R_{y}^{k_{n+1}}(z) \in I$ and by definition of I we must have $k_{n+1}>k_{n}$, so we found a new return. Thus

$$
t^{k_{n}}(x, y)=\left(R_{y}^{k_{n}}(x), y\right) \in[a, b] \times[c, d] \quad \text { for all } k \in \mathbb{N}
$$

[Remark that if λ is the 2 -dimensional Lebesgue measure, here $\lambda(X)=\lambda\left(\mathbb{T}^{2}\right)=1$, so T preserves the probability measure λ. Thus, Poincaré Recurrence theorem does apply to T but only gives that almost-every point $(x, y) \in[a, b] \times[c, d]$ is recurrent, while in this special case we showed that a stronger conclusion holds.]

Part (b) Let $X=\mathbb{R}^{2}$ and let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation

$$
L(x, y)=(x+y, x) .
$$

Remark that t preserves horizontal lines and on each horizontal line $\{x\} \times \mathbb{R}$ it acts as a translation. We want to show the conclusion of the Strong Form of Poincaré Recurrence Theorem fails for L. Since

$$
T^{n}(x, y)=(x+n y, y)
$$

if $y \neq 0$, then $x+n y \rightarrow \infty$ as $n \rightarrow \infty$. Thus, for any (x, y) with $y \neq 0$ (that is, not on the horizontal axis $\mathbb{R} \times\{0\}), T^{n}(x, y)$ escapes. To show that the statement of Poincaré Recurrence Theorem fails, we want to exhibit a set of positive measure for which it is not true that almost-every point is recurrent. Consider for example any bounded interval $[a, b] \subset \mathbb{R}$ and consider the set $B=[a, b] \times \mathbb{R} \backslash\{0\}$. Then B is clearly a set of positive (actually infinite) 2 -dimensional Lebesgue measure, but every point in B eventually leaves B and never returns. This shows that T does not satisfy the conclusion of Poincaré Recurrence Theorem.

The assumption of Poincaré Recurrence Theorem which fails is finiteness of the measure. Remark indeed that L preserves the 2 -dimensional Lebesgue measure on \mathbb{R}^{2}, which is not finite, since $\lambda\left(\mathbb{R}^{2}\right)=+\infty$.
Part (b') Let $X=\mathbb{R}^{2}$ and let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation

$$
L(x, y)=(x+y, x)
$$

Remark that t preserves horizontal lines and on each horizontal line $\{x\} \times \mathbb{R}$ it acts as a translation. We want to find a set for which the conclusion of the Weak Form of Poincaré Recurrence Theorem holds even though the Strong Form of Poincaré Recurrence fails for L. Since

$$
T^{n}(x, y)=(x+n y, y)
$$

if $y \neq 0$, then $x+n y \rightarrow \infty$ as $n \rightarrow \infty$. Thus, for any (x, y) with $y \neq 0$ (that is, not on the horizontal axis $\mathbb{R} \times\{0\}), T^{n}(x, y)$ escapes. On the other hand, if $y=0, T^{n}(x, 0)=(x, 0)$ so that horizonal axes is fixed and if y is small, then points $T^{n}(x, y)$ escape very slowly.

Let us choose for example as a set the rectangle $B=(0,1) \times(0, \epsilon)$, for some fixed $\epsilon>0$. Then for example all the points in the rectangle $B^{\prime}=(0,1-\epsilon) \times(0, \epsilon) \subset B$ return to B, since if $(x, y) \in B^{\prime}$, then $0<x<1-\epsilon$ and $0<y<\epsilon$ so $0<x+y<1$ and $T(x, y)=(x+y, y) \in B$.
[The set of points which return in one step is actually larger than B^{\prime} and consists more precisely of the intersection $B \cap T^{-1}(B)$ which can be calculating remarking that $T^{-1}(B)$ is a parallelogram with vertices $(0,0),(-\epsilon, \epsilon),(1, \epsilon),(1-\epsilon, \epsilon)$.]

On the other hand, since

$$
T^{n}(x, y)=(x+n y, y)
$$

if $y \neq 0$, then $x+n y \rightarrow \infty$ as $n \rightarrow \infty$. Thus, for any $(x, y) \in B^{\prime}$, since $y \neq 0 T^{n}(x, y)$ escapes. This shows that B contains a set of positive measure of points, that is for example B^{\prime}, which return to B but are not infinitely recurrent.

The assumption of Poincaré Recurrence Theorem which fails is finiteness of the measure. Remark indeed that L preserves the 2 -dimensional Lebesgue measure on \mathbb{R}^{2}, which is not finite, since $\lambda\left(\mathbb{R}^{2}\right)=+\infty$.

Solution to Exercise 3

Part (a) Let (X, \mathscr{B}) be a measurable space and $T: X \rightarrow X$ be a transformation. Let μ_{1} and μ_{2} are probability measures on (X, \mathscr{B}). Let us show that any linear combination

$$
\mu=\lambda \mu_{1}+(1-\lambda) \mu_{2}, \quad \text { where } \quad 0 \leq \lambda \leq 1
$$

is a probability measure. Clearly $\mu(\emptyset)=\lambda \mu_{1}(\emptyset)+(1-\lambda) \mu_{2}(\emptyset)=0$ since $\mu_{1}(\emptyset)=\mu_{2}(\emptyset)=0$ by definition of measure.

If for $n \in \mathbb{N}$ the sets $A_{n} \in \mathscr{B}$ are measurable disjoint sets (do not forget disjoint!), since both μ_{1} and μ_{2} are countably additive,

$$
\begin{aligned}
\mu\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) & =\lambda \mu_{1}\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)+(1-\lambda) \mu_{2}\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) \\
& =\lambda \sum_{n \in \mathbb{N}} \mu_{1}\left(A_{n}\right)+(1-\lambda) \sum_{n \in \mathbb{N}} \mu_{2}\left(A_{n}\right) \\
& =\sum_{n \in \mathbb{N}}\left(\lambda \mu_{1}\left(A_{n}\right)+(1-\lambda) \mu_{2}\left(A_{n}\right)\right)=\sum_{n \in \mathbb{N}} \mu\left(A_{n}\right),
\end{aligned}
$$

which shows that also μ is countably additive and thus it is a measure. Moreover it is a probability measure since $\mu_{1}(X)=\mu_{2}(X)=1$ so

$$
\mu(X)=\lambda \mu_{1}(X)+(1-\lambda) \mu_{2}(X)=\lambda+(1-\lambda)=1
$$

Part (b) Let μ be a measure on (X, \mathscr{B}) preserved by T. Let $A \in \mathscr{B}$ be a measurable set with positive measure $\mu(A)>0$ and let

$$
\mu_{1}(B)=\frac{\mu(A \cap B)}{\mu(A)} \quad \text { for all } B \in \mathscr{B}
$$

Let us check that μ_{1} is a measure. Clearly, since $\mu(A \cap \emptyset)=\mu(\emptyset)=0, \mu_{1}(\emptyset)=0$.

If $A_{n} \in \mathscr{B}, n \in \mathbb{N}$, are measurable disjoint sets, since μ is countably additive, we have

$$
\begin{aligned}
\mu_{1}\left(\bigcup_{n \in \mathbb{N}} A_{n}\right) & =\frac{\mu\left(A \cap \bigcup_{n \in \mathbb{N}} A_{n}\right)}{\mu(A)}=\frac{\mu\left(\bigcup_{n \in \mathbb{N}}\left(A \cap A_{n}\right)\right)}{\mu(A)} \\
& =\frac{\sum_{n \in \mathbb{N}} \mu\left(A \cap A_{n}\right)}{\mu(A)}=\sum_{n \in \mathbb{N}} \frac{\mu\left(A \cap A_{n}\right)}{\mu(A)}=\sum_{n \in \mathbb{N}} \mu_{1}\left(A_{n}\right),
\end{aligned}
$$

which shows that also μ_{1} is countably additive and thus it is a measure. Moreover it is a probability measure since $A \subset X$ implies that $A \cap X=A$, so

$$
\mu_{1}(X)=\frac{\mu(A \cap X)}{\mu(A)}=\frac{\mu(A)}{\mu(A)}=1
$$

Similarly, if we set

$$
\mu_{2}(B)=\frac{\mu\left(A^{c} \cap B\right)}{\mu\left(A^{c}\right)} \quad \text { for all } B \in \mathscr{B}
$$

also μ_{2} is a probability measure, since since $\mu\left(A^{c} \cap \emptyset\right)=\mu(\emptyset)=0, m u_{2}(\emptyset)=0$.
If $A_{n} \in \mathscr{B}, n \in \mathbb{N}$, are measurable disjoint sets, since μ is countably additive, we have

$$
\mu_{2}\left(\bigcup_{n \in \mathbb{N}} A_{n}\right)=\frac{\mu\left(A^{c} \cap \bigcup_{n \in \mathbb{N}} A_{n}\right)}{\mu\left(A^{c}\right)}=\frac{\mu\left(\bigcup_{n \in \mathbb{N}}\left(A^{c} \cap A_{n}\right)\right)}{\mu\left(A^{c}\right)}=\sum_{n \in \mathbb{N}} \frac{\mu\left(A^{c} \cap A_{n}\right)}{\mu\left(A^{c}\right)}=\sum_{n \in \mathbb{N}} \mu_{2}\left(A_{n}\right),
$$

so $m u_{2}$ is a measure. It is a a probability measure since

$$
\mu_{2}(X)=\frac{\mu\left(A^{c} \cap X\right)}{\mu\left(A^{c}\right)}=\frac{\mu\left(A^{c}\right)}{\mu\left(A^{c}\right)}=1
$$

Assume now that A is invariant under T. Let us show that both μ_{1} and μ_{2} are invariant under T. Since A is invariant, $T^{-1}(A)=A$, so for any $B \in \mathscr{B}$ we have

$$
\begin{equation*}
\mu_{1}\left(T^{-1}(B)\right)=\frac{\mu\left(A \cap T^{-1}(B)\right)}{\mu(A)}=\frac{\mu\left(T^{-1}(A) \cap T^{-1}(B)\right)}{\mu(A)}=\frac{\mu\left(T^{-1}(A \cap B)\right.}{\mu\left(T^{-1}(A)\right)} \tag{1}
\end{equation*}
$$

where we used that $T^{-1}(A \cap B)=T^{-1}(A) \cap T^{-1}(B)$.
[To prove that $T^{-1}(A \cap B)=T^{-1}(A) \cap T^{-1}(B)$, remark that $x \in T^{-1}(A \cap B)$ iff $T(x) \in A \cap B$, that is iff $T(x) \in A$ and $T(x) \in B$, so iff $x \in T^{-1}(A)$ and $x \in T^{-1}(B)$ which means $x \in T^{-1}(A) \cap T^{-1}(B)$.]

Since μ is invariant under T, applying invariance to the set $T^{-1}(A \cap B)$, we have

$$
\begin{equation*}
\frac{\mu\left(T^{-1}(A \cap B)\right)}{\mu(A)}=\frac{\mu(A \cap B)}{\mu(A)}=\mu_{1}(B) \tag{2}
\end{equation*}
$$

so combining (1) and (2) we proved that $\mu_{1}\left(T^{-1}(B)\right)=\mu_{1}(B)$ for any $B \in \mathscr{B}$ and that μ_{1} is T-invariant.

If A is invariant, also A^{c} is invariant, that is $T^{-1}\left(A^{c}\right)=A^{c}$.
[Indeed, $x \in T^{-1}\left(A^{c}\right)$ iff $T(x) \in A^{c}$, that is iff $x \notin A$, but since $T^{-1}(A)=A, x \notin A$ iff $x \in A^{c}$. So $x \in T^{-1}\left(A^{c}\right)$ iff $x \in A^{c}$, that is $T^{-1}\left(A^{c}\right)=A^{c}$.]

Dynamical Systems and Ergodic Theory Solutions/Feedback for Homework 7

Reasoning as above and using $T^{-1}\left(A^{c}\right)=A^{c}$ together with invariance of μ this gives
$\mu_{2}\left(T^{-1}(B)\right)=\frac{\mu\left(A^{c} \cap T^{-1}(B)\right)}{\mu\left(A^{c}\right)}=\frac{\mu\left(T^{-1}\left(A^{c}\right) \cap T^{-1}(B)\right)}{\mu\left(A^{c}\right)}=\frac{\mu\left(T^{-1}\left(A^{c} \cap B\right)\right)}{\mu\left(A^{c}\right)}=\frac{\mu\left(A^{c} \cap B\right)}{\mu\left(A^{c}\right)}=\mu_{2}(B)$,
for any $B \in \mathscr{B}$, so also μ_{2} is invariant under T.
Part (c) Let us show that if probability measure μ invariant under T cannot be written as strict linear combination of two invariant probability measures for T, that is as

$$
\begin{equation*}
\mu=\lambda \mu_{1}+(1-\lambda) \mu_{2}, \quad \text { where } \quad 0<\lambda<1, \quad \mu_{1} \neq \mu_{2} \tag{3}
\end{equation*}
$$

then it is ergodic. Let us prove it by contradiction. If T were not ergodic, there would exist an invariant set A with measure $0<\mu(A)<1$. Then, if μ_{1} and μ_{2} are the measures defined as in Part (ii) by restricting μ to A and $X \backslash A$ and renormalizing, both μ_{1} and μ_{2} are invariant probability measures, as we showed in Part (ii). Moreover, since for any $B \in \mathscr{B}$ we can express B as a disjoint union

$$
B=(B \cap A) \cup\left(B \cap A^{c}\right) \quad \Rightarrow \quad \mu(B)=\mu(B \cap A)+\mu\left(B \cap A^{c}\right)
$$

(recall to remark that the union is disjoint to use additivity of a measure). Thus if we set

$$
\lambda=\mu(A) \quad \Rightarrow \quad 1-\lambda=\mu(X)-\mu(A)=\mu(X \backslash A)
$$

we have

$$
\mu(B)=\mu(A) \frac{\mu(B \cap A)}{\mu(A)}+\mu\left(A^{c}\right) \frac{\mu\left(B \cap A^{c}\right)}{\mu\left(A^{c}\right)}=\lambda \mu_{1}(B)+(1-\lambda) \mu_{2}(B)
$$

Since this holds for any $B \in \mathscr{B}$, it shows that $\mu=\lambda \mu_{1}+(1-\lambda) \mu_{2}$. This gives an expression of μ as linear combinations of two invariant probability measures. Let us check that is it strict and non trivial. We have $0<\lambda<1$ since $\lambda=\mu(A)$ and $0<\mu(A)<1$. Let us also check that $\mu_{1} \neq \mu_{2}$. To show that two measures are different it is enough to find a set to which they assign a different measure. If we take for example $B=A$,

$$
\mu_{1}(A)=\frac{\mu(A \cap A)}{\mu(A)}=1, \quad \mu_{2}(A)=\frac{\mu\left(A \cap A^{c}\right)}{\mu\left(A^{c}\right)}=0, \quad \Rightarrow \quad \mu_{1}(A) \neq \mu_{2}(A) \quad \Rightarrow \quad \mu_{1} \neq \mu_{2}
$$

Thus, we expressed μ as a linear combination as in (3), which is contradiction. We conclude that μ is ergodic.

Solution to Exercise 4

Part (a) Let $R_{\alpha}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be a rational rotation, where $\alpha=p / q$ and p, q are coprime. To show that R_{α} is not ergodic, it is enough to find a non-constant invariant function. Consider for example the function

$$
f(x)=\sin (2 \pi q x) .
$$

Clearly f is a non constant function. We have

$$
f\left(R_{\alpha}(x)\right)=\sin \left(2 \pi q\left(x+\frac{p}{q}\right)\right)=\sin (2 \pi(q x+p))=\sin (2 \pi q x)
$$

which shows that $f \circ T=f$, so f is invariant.

Part (b) Assume now that there exists $\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ such that $\underline{n} \neq(0,0)$ and $<\underline{n}, \underline{\alpha}>\in \mathbb{Z}$, show that $R_{\underline{\alpha}}$ is not ergodic. Let us show that in this case $R_{\underline{\alpha}}$ is not ergodic by constructing an invariant function. If $\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ is as above, consider the function $f: \mathbb{T}^{2} \rightarrow \mathbb{C}$ given by

$$
g\left(x_{1}, x_{2}\right)=e^{2 \pi i<\underline{n}, \underline{x}>} .
$$

Since $\underline{n} \neq(0,0), g$ is not constant. Let us check that from the assumption that $<\underline{n}, \underline{\alpha}>\in \mathbb{Z}$ it follows that g is invariant:

$$
\begin{aligned}
g\left(R_{\underline{\alpha}}(\underline{x})\right) & =e^{2 \pi i<\underline{n}, \underline{x}+\underline{\alpha}-\underline{k}>} \quad\left(\text { where } \underline{k}=\left(k_{1}, k_{2}\right) \in \mathbb{Z}^{2} \text { are the integer parts of } \alpha_{1} x_{1} \text { and } \alpha_{2} x_{2}\right) \\
& =e^{2 \pi i<\underline{n}, \underline{\alpha}>} e^{2 \pi i<\underline{n}, \underline{x}>} e^{-2 \pi i<\underline{n}, \underline{c}>} \\
& =e^{2 \pi i<\underline{n}, \underline{\alpha}>} e^{2 \pi i<\underline{n}, \underline{x}>} \quad \quad \quad\left(\text { since }<\underline{n}, \underline{k}>\in \mathbb{Z} \text { implies } e^{-2 \pi i<\underline{n}, \underline{k}>}=1\right) \\
& =e^{2 \pi i<\underline{n}, \underline{x}>}=g(\underline{x}) \quad\left(\text { since }<\underline{n}, \underline{\alpha}>\in \mathbb{Z} \text { implies } e^{2 \pi i<\underline{n}, \underline{\alpha}>}=1\right) .
\end{aligned}
$$

Remark that this function has complex values. To produce a real-valued invariant function $f: \mathbb{T}^{2} \rightarrow$ \mathbb{R} one can take the real part

$$
f\left(x_{1}, x_{2}\right)=\Re e^{2 \pi i<\underline{n}, \underline{x}>}=\cos (2 \pi<\underline{n}, \underline{x}>)=\cos \left(2 \pi\left(n_{1} x_{1}+n_{2} x_{2}\right) .\right.
$$

Clearly, if $g \circ R_{\underline{\alpha}}(\underline{x})=g(\underline{x})$ as complex numbers, also $\Re\left(g \circ R_{\underline{\alpha}}(\underline{x})\right)=\Re g(\underline{x})$, so f is also invariant. [Clearly one can also consider the imaginary part.]

