Problem Set 8

HAND IN on MONDAY, November 27.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]

SET Exercises for Level 3: 8.1, 8.4, 8.5

SET Exercises for Level M: 8.2, 8.4, 8.5
Exercise 8.1. (SET for Level 3) Given $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{2}$, let $R_{\underline{\alpha}}: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ be the translation on the torus by $\underline{\alpha}$, given by

$$
\begin{equation*}
R_{\underline{\alpha}}\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha_{1} \quad \bmod 1, x_{2}+\alpha_{2} \quad \bmod 1\right) . \tag{1}
\end{equation*}
$$

Using Fourier series, show that if there is no $\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}, \underline{n} \neq(0,0)$, such that

$$
\langle\underline{n}, \underline{\alpha}\rangle=n_{1} \alpha_{1}+n_{2} \alpha_{2}=k \quad \text { for some } k \in \mathbb{Z}
$$

then $R_{\underline{\alpha}}$ is ergodic with respect to the Lebesgue measure λ.

Exercise 8.2. (SET for Level M) Let $X=\mathbb{R}^{2} / \mathbb{Z}^{2}$ with the Borel σ-algebra and the Lebesgue measure λ. Let $\alpha \in \mathbb{R}$ and consider the $\operatorname{map} T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ given by

$$
T(x, y)=(x+\alpha \quad \bmod 1, x+y \quad \bmod 1)
$$

One can check that T preserves λ (you can show it as an exercise if you wish, but it is not required.)
Prove that T is ergodic with respect to λ if and only if α is irrational.

Exercise 8.3. Let $X=\mathbb{R} / \mathbb{Z}, \mathscr{B}$ the Borel σ-algebra, λ the 1 -dimensional Lebesgue measure.
(a) Use Fourier series to show that any linear expanding map $T_{m}(x)=m x \bmod 1($ where $m>1$ is an integer) is ergodic with respect to λ.

We defined in class what it means that a number which is normal in base 2 .
(b) Give a similar definition of a number which is normal in base r and prove using Part (a) that almost every $x \in[0,1]$ is normal base r.

Exercise 8.4. (SET) Given $x \in[0,1]$, let a_{i} be the entries of the continued fraction expansion $x=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]$. Let $X=[0,1]$ with the Borel σ-algebra, μ be the Gauss measure and $G: X \rightarrow X$ be the Gauss map. Recall that G preserves the Gauss measure μ. One can show that the Gauss map is ergodic with respect to μ. Assume ergodicity of the Gauss map.
(a) Show that the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\log (n), \quad \text { if } x \in P_{n}=\left(\frac{1}{n+1}, \frac{1}{n}\right]
$$

is in $L^{1}(\mu)$ and that

$$
\int f \mathrm{~d} \mu=\sum_{n=1}^{\infty} \frac{\log n}{\log 2} \log \left(\frac{(n+1)^{2}}{n(n+2)}\right)<+\infty
$$

(b) Show that for almost every point $x \in[0,1]$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log a_{i}=\int f(x) \mathrm{d} \mu
$$

(c) Deduce that for almost every point $x \in[0,1]$ the geometric mean of the entries of the continued fraction has a limit and

$$
\lim _{N \rightarrow \infty}\left(a_{0} a_{2} \ldots a_{N-1}\right)^{\frac{1}{N}}=\prod_{n=1}^{\infty}\left(\frac{(n+1)^{2}}{n(n+2)}\right)^{\frac{\log n}{\log 2}}
$$

Exercise 8.5. (SET) Consider the sequence $\left\{3^{n}\right\}_{n \in \mathbb{N}}$ of powers of 3 :

$$
1,3,9,27,81,243,729,2187,6561, \ldots
$$

and consider the sequence of second leading digits in the expansion in base 10 , starting from $n \geq 3$ (so that there is a second digit):

$$
7,1,4,2,1,5, \ldots
$$

What is the frequency of occurence of the digit k as second leading digit of $\left\{3^{n}\right\}_{n \geq 3}$? Justify your answer.

