Homework 8

Problem Set 8

HAND IN on MONDAY, November 27.

[Or leave in the course pigeon hole in the Main Maths building before 12pm.]

SET Exercises for Level 3: 8.1, 8.4, 8.5

SET Exercises for Level M: 8.2, 8.4, 8.5

Exercise 8.1. (SET for Level 3) Given $\underline{\alpha} = (\alpha_1, \alpha_2) \in \mathbb{R}^2$, let $R_{\underline{\alpha}} : \mathbb{R}^2 / \mathbb{Z}^2 \to \mathbb{R}^2 / \mathbb{Z}^2$ be the translation on the torus by $\underline{\alpha}$, given by

$$R_{\alpha}(x_1, x_2) = (x_1 + \alpha_1 \mod 1, x_2 + \alpha_2 \mod 1).$$
(1)

Using Fourier series, show that if there is no $\underline{n} = (n_1, n_2) \in \mathbb{Z}^2$, $\underline{n} \neq (0, 0)$, such that

 $\langle \underline{n}, \underline{\alpha} \rangle = n_1 \alpha_1 + n_2 \alpha_2 = k$ for some $k \in \mathbb{Z}$,

then $R_{\underline{\alpha}}$ is ergodic with respect to the Lebesgue measure λ .

Exercise 8.2. (SET for Level M) Let $X = \mathbb{R}^2/\mathbb{Z}^2$ with the Borel σ -algebra and the Lebesgue measure λ . Let $\alpha \in \mathbb{R}$ and consider the map $T : \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ given by

$$T(x,y) = (x + \alpha \mod 1, x + y \mod 1).$$

One can check that T preserves λ (you can show it as an exercise if you wish, but it is not required.)

Prove that T is ergodic with respect to λ if and only if α is irrational.

Exercise 8.3. Let $X = \mathbb{R}/\mathbb{Z}$, \mathscr{B} the Borel σ -algebra, λ the 1-dimensional Lebesgue measure.

(a) Use Fourier series to show that any linear expanding map $T_m(x) = mx \mod 1$ (where m > 1 is an integer) is ergodic with respect to λ .

We defined in class what it means that a number which is normal in base 2.

(b) Give a similar definition of a number which is normal in base r and prove using Part (a) that almost every $x \in [0, 1]$ is normal base r.

Exercise 8.4. (SET) Given $x \in [0,1]$, let a_i be the entries of the continued fraction expansion $x = [a_0, a_1, \ldots, a_n, \ldots]$. Let X = [0,1] with the Borel σ -algebra, μ be the Gauss measure and $G: X \to X$ be the Gauss map. Recall that G preserves the Gauss measure μ . One can show that the Gauss map is ergodic with respect to μ . Assume ergodicity of the Gauss map.

(a) Show that the function $f:[0,1] \to \mathbb{R}$ defined by

$$f(x) = \log(n),$$
 if $x \in P_n = \left(\frac{1}{n+1}, \frac{1}{n}\right]$

is in $L^1(\mu)$ and that

$$\int f \mathrm{d}\mu = \sum_{n=1}^{\infty} \frac{\log n}{\log 2} \log \left(\frac{(n+1)^2}{n(n+2)} \right) < +\infty;$$

(b) Show that for almost every point $x \in [0, 1]$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \log a_i = \int f(x) \mathrm{d}\mu;$$

(c) Deduce that for almost every point $x \in [0, 1]$ the geometric mean of the entries of the continued fraction has a limit and

$$\lim_{N \to \infty} (a_0 a_2 \dots a_{N-1})^{\frac{1}{N}} = \prod_{n=1}^{\infty} \left(\frac{(n+1)^2}{n(n+2)} \right)^{\frac{\log n}{\log 2}}.$$

Exercise 8.5. (SET) Consider the sequence $\{3^n\}_{n\in\mathbb{N}}$ of powers of 3:

$$1, 3, 9, 27, 81, 243, 729, 2187, 6561, \ldots$$

and consider the sequence of *second* leading digits in the expansion in base 10, starting from $n \ge 3$ (so that there is a second digit):

$$7, 1, 4, 2, 1, 5, \ldots$$

What is the frequency of occurrence of the digit k as second leading digit of $\{3^n\}_{n\geq 3}$? Justify your answer.