
Dynamical Systems and Ergodic Theory Solutions/Feedback 8

Solutions to Problem Set 8

Feedback

Problem 8.1 was done well, and there were only some minor mistakes in computation of Fourier coefficients.
There was a common mistake in Problem 8.2 in computation of Fourier coefficients: note that Fourier
coefficients can not depend on the variables x and y. In Problem 8.3, some people missed to explain why the
function f is measurable and why the series converges. Most people had the right idea how to solve Problem
8.5, but there was some confusion about computing the right condition on n.

Solutions

Solution to Exercise 8.1

Consider the translation on the torus Rα : T2 → T2 by the vector α = (α1, α2) ∈ R2, which is the map given
by

Rα(x1, x2) = (x1 + α1 mod 1, x2 + α2 mod 1).

One can check that Rα : T2 → T2 preserves the two dimentional Lebesgue measure λ on T2 (you can try to
prove this as exercise). Assume that α is an irrational vector, that is there is no n = (n1, n2) ∈ Z2, n 6= (0, 0),
such that

< n,α >= n1α1 + n2α2 = k for some k ∈ Z.
and let us show that Rα is ergodic with respect to λ by using Fourier series. To prove ergodicity it is enough
to consider a function f ∈ L2(T2, λ) that is invariant under Rα, that is f ◦Rα = f , and to show that f has
to be constant λ-almost everywhere. Since f ∈ L2(T2, λ), we can represent f as a 2−dimensional Fourier
series, that is

f(x1, x2) =
∑

n=(n1,n2)∈Z2

cne
2πi<n,x>, where cn = cn1,n2 =

∫ 1

0

∫ 1

0

f(x1, x2)e−2πi(n1x1+n2x2)dx1dx2, (1)

are the Fourier coefficients and the equality holds in the L2 sense .
Computing the Fourier expansion at Rα(x1, x2) = (x1+α1−k1, x2+α2−k2) (where k1, k2 are respectively

the integer parts of x1+α1 and x2+α2), since e−2πin1k1 = e−2πin2k2 = 1 because k1n1 and k2n2 are integers,
we get

f ◦Rα(x1, x2) =
∑

(n1,n2)∈Z2

cne
2πi[n1(x1+α1−k1)+n2(x2+α2−k2)]

=
∑

(n1,n2)∈Z2

cne
2πi(n1α1+n2α2)e2πi(n1x1+n2x2) (since e2πi(−n1k1−n2k2) = 1).

(2)

Alternatively, in a more compact form one can also write Rα(x) = x+ α− k and thus

f(Rα(x)) =
∑
n∈Z2

cne
2πi<n,x+α−k> =

∑
n∈Z2

cne
2πi<n,α>e2πi<n,x>e−2πi<n,k>

=
∑
n∈Z2

cne
2πi<n,α>e2πi<n,x> (since e−2πi<n,k> = 1).

By invariance of f , since f ◦Rα = f , we can equate (1) and (2):∑
n=n∈Z2

cne
2πi<n,x> =

∑
n∈Z2

cne
2πi<n,α>e2πi<n,x>.
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By uniqueness of Fourier coefficients the coefficient of the term e2πi<n,x> must be the same in the two
expressions, thus for any n ∈ Z2 we have

cn = e2πi<n,α>cn.

If n 6= (0, 0), by assumption < n,α > is not an integer, thus e2πi<n,α> 6= 1 so

(1− e2πi<n,α>)cn = 0 ⇒ cn = 0.

Thus the only non-zero term in the Fourier expansion is possibly c(0,0), so f is constant. This complete the
proof that if α is irrational, Rα is ergodic.

Solution to Exercise 8.2

Let X = T2 with the Borel σ−algebra, λ the Lebesgue measure λ, α ∈ R and consider the map T : T2 → T2

given by
T (x, y) = (x+ α mod 1, x+ y mod 1).

Let us first assume that α is irrational. To prove that T is ergodic with respect to λ ergodicity it is enough
to consider a function f ∈ L2(T2, λ) that is invariant under T , that is f ◦ T = f , and to show that f has
to be constant λ-almost everywhere. Since f ∈ L2(T2, λ), we can represent f as a 2−dimensional Fourier
series, that is

f(x, y) =
∑

n=(n1,n2)∈Z2

cne
2πi(n1x+n2y), where cn = cn1,n2

=

∫ 1

0

∫ 1

0

f(x, y)e−2πi(n1x+n2y)dxdy, (3)

are the Fourier coefficients and the equality holds in the L2 sense.
Evaluating the Fourier expansion at T (x, y) = (x+ α− k1, x+ y − k2) (where k1, k2 are respectively the

integer parts of x+α and x+y), since e−2πin1k1 = e−2πin2k2 = 1 because k1n1 and k2n2 are integers, we get

f ◦ T (x, y) =
∑

(n1,n2)∈Z2

cne
2πi[n1(x+α−k1)+n2(x+y−k2)]

=
∑

(n1,n2)∈Z2

cne
2πi(n1α)e2πi((n1+n2)x+n2y).

(4)

By invariance of f , since f ◦ T = f , we can equate (3) and (4):∑
n=(n1,n2)∈Z2

cne
2πi(n1x+n2y) =

∑
(n1,n2)∈Z2

cne
2πi(n1α)e2πi((n1+n2)x+n2y).

By uniqueness of Fourier coefficients the coefficient of the term e2πi((n1+n2)x+n2y) must be the same in the
two expressions, thus for any n ∈ Z2 we have

cn1+n2,n2 = e2πin1αcn1,n2 . (5)

Thus, |cn1+n2,n2
| = |cn1,n2

| and applying the identity (5) again to cn′1,n′2 = cn1+n2,n2
and so on by induction,

we get
|cn1,n2 | = |cn1+n2,n2 | = |cn1+2n2,n2 | = · · · = |cn1+kn2,n2 | = . . . (k ∈ N)

If n2 6= 0, n2k → ∞ as k → ∞, and so does the norm of the vector (n1 + kn2, n2). Thus, by the Riemann
Lebesgue Lemma,

lim
k→∞

|cn1+kn2,n2 | = 0.
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Since the value of |cn1+kn2,n2
| is independent on k, this shows that it has to be zero, so, for k = 0 we already

have
|cn1,n2

| = 0 ⇒ cn1,n2
= 0, ∀ n2 6= 0.

Let us now consider the coefficients with n2 = 0. The identity (5) become

cn1,0 = e2πin1αcn1,0 ⇔ cn1,0(1− e2πin1α) = cn1,0.

Since α is irrational, the orbit O+
Rα

(0) of 0, which consists of the points Rnα(0)n≥0 = {nα} for n ∈ N, consists

of distinct points. Thus, if n1 6= 0, {n1α} 6= {0 α} = 0, so (1− e2πin1α) 6= 1. This shows that if n2 = 0 and
n1 6= 0 we have

cn1,0 = 0.

Thus, combining the two conclusions, cn1,n2
= 0 for all (n1, n2) 6= (0, 0) and the only non-zero term in the

Fourier expansion is possibly c(0,0), so f is constant. This complete the proof that if α is irrational, T is
ergodic.

To complete the proof of the if and only if, we now have to show that T is not ergodic if α is irrational.
Let α = p/q. It is enough to find a function f : T2 → T2 which is invariant and not constant. Consider for
example the function

f(x, y) = sin(2πqx).

Clearly f is a non constant function. Let us show that it is invariant by computing

f(T (x, y)) = sin(2πq

(
x+

p

q

)
) = sin(2π(qx+ p)) = sin(2πqx).

Thus, f ◦ T = f . This shows that T is not ergodic when α is rational.

Solution to Exercise 8.4

Let G : X → X be the Gauss map and µ the Gauss measure.
Part (a) We can write

f(x) =

∞∑
n=1

log(n) χPn , where Pn =

(
1

n+ 1
,

1

n

]
and χPn denotes the characteristic function (χPn(x) = 1 if x ∈ Pn and 0 otherwise). The preimages f−1(A)
are the unions over Pn’s over n such that log(n) ∈ A. In particular, this implies that f is measurable.

The sequence fN (x) =
∑N
n=1 log(n) χPn is a sequence of simple functions (finite linear combination of

characteristic functions) which converge monotonically to the positive function f as N → ∞. Thus, by
definition of integral with respect of a measure (see Step (2’) and Step (1) in the definition of integrals,
Lecture Notes § 3.4)∫

fdµ = lim
N→∞

∫
fNdµ = lim

N→∞

∫ N∑
n=1

log(N)χPndµ = lim
N→∞

N∑
n=1

log(n)µ(Pn) =

∞∑
n=1

log(n)µ(Pn).

Recall that the measure µ is given by the density 1
(1+x) log 2 , thus∫

fdµ =

∞∑
n=1

log(n)µ

((
1

n+ 1
,

1

n

])
=

∞∑
n=1

log(n)

∫ 1/n

1
n+1

1

(1 + x) log 2

=

∞∑
n=1

log(n)

log 2

(
log

(
1 +

1

n

)
−
(

log

(
1 +

1

n+ 1

))
=

∞∑
n=1

log n

log 2
log

(
(n+ 1)2

n(n+ 2)

))
.
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To check that f ∈ L1(µ), one needs to check that
∫
|f |dµ < +∞. Since f ≥ 0, |f | = f , thus it is enough to

check that the above series is convergent. Since for 0 ≤ x < 1

log(1 + x) = x− x2 + x3 − · · · = x

( ∞∑
k=0

(−1)kxk

)
= x

1

1− (−x)
= x

1

1 + x
≤ x,

we can estimate the nth term of the series by

log

(
(n+ 1)2

n(n+ 2)

)
= log

(
n2 + 2n+ 1

n2 + 2n

)
= log

(
1 +

1

n2 + 2n

)
≤ 1

n2 + 2n
≤ 1

n2
.

Thus, the series is bounded above by the series

∞∑
n=1

log n

log 2
log

(
(n+ 1)2

n(n+ 2

)
≤ 1

log 2

∞∑
n=1

log n

n2
,

which is convergent (for example by the comparision test with the series
∑∞
n=1

1
n2−ε where ε is any number

such that 0 < ε < 1, since log n ≤ nε for all n sufficiently large and the series
∑∞
n=1

1
n2−ε is convergent since

2− ε > 1)). This concludes the proof that f ∈ L1(µ).

Part (b) Consider

1

n

n−1∑
i=0

log ai.

Let us show that if ai are the continued fraction entries of x = [a0, a1, . . . , an, . . . ], then

log ai = f(Gi(x)),

where f is as in Part (a). Recall that the entries of the continued fraction expansion give the itinerary of
x with respect to the partition {Pn, n ≥ 1}, so that a0 = n exactly when x ∈ Pn and ai = n exactly when
Gi(x) ∈ Pn. Thus, log ai = log n iff Gi(x) ∈ Pn. On the other hand, by definition of the function f , also

f(Gi(x)) = logn iff Gi(x) ∈ Pn.

This shows that log ai = f(Gi(x)). Thus

1

n

n−1∑
i=0

log ai =
1

n

n−1∑
i=0

log(Gi(x)).

Since G is ergodic with respect to µ and f ∈ L1(µ) by Part (a), the Birkhoff ergodic theorem gives that for
µ-almost every point x ∈ [0, 1]

lim
n→∞

1

n

n−1∑
i=0

f(Gi(x)) =

∫
f(x)dµ.

Part (c) Let us now show that the geometric mean of the entries of the CF of x, that is

lim
N→∞

(a0a2 . . . aN−1)
1
N

exists for µ-almost every x ∈ [0, 1] and let us compute it.
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Combining Part (b) and Part (a), for µ-almost every x ∈ [0, 1] the following limit exists and is given by

lim
N→∞

1

N

N−1∑
i=0

log(ai) =

∫
f(x)dµ =

∞∑
n=1

log n

log 2
log

(
(n+ 1)2

n(n+ 2)

)
. (6)

Remark that, taking the exponentials of both sides for a fixed N we get

e
1
N

∑N−1
i=0 log(ai) =

(
e
∑N−1
i=0 log(ai)

) 1
N

=

(
N−1∏
i=0

elog(ai)

) 1
N

= (a0a2 . . . aN−1)
1
N (7)

and respectively

e

∑N
n=1

logn
log 2 log

(
(n+1)2

n(n+2)

)
=

N∏
n=1

(
e
log

(
(n+1)2

n(n+2)

)) logn
log 2

=

N∏
n=1

(
(n+ 1)2

n(n+ 2)

) logn
log 2

. (8)

Thus, since the exponential function is continuous, for the same (full measure) set of x for which the limit
(6) exists we have

lim
N→∞

(a0a2 . . . aN−1)
1
N = lim

N→∞
e

1
N

∑N−1
i=0 log(ai) (by (7))

= elimN→∞
1
N

∑N−1
i=0 log(ai) (by continuity of the exponential)

= e
limN→∞

∑N
n=1

logn
log 2 log

(
(n+1)2

n(n+2)

)
(by (6))

= lim
N→∞

N∏
n=1

(
(n+ 1)2

n(n+ 2)

) logn
log 2

(by continuity and (8))

=

∞∏
n=1

(
(n+ 1)2

n(n+ 2)

) logn
log 2

(by definition of infinite product).

Solution to Exercise 8.5

Let us compute the frequency of occurence of the digit k as second leading digit of {3n}n≥3. Notice that
the second leading digit of 3n is k if and only if there exist integers r, s, where 1 ≤ s ≤ 9 and0 ≤ r ≥ 9, such
that

s10r+1 + k10r ≤ 3n < s10r+1 + (k + 1)10r.

[For example, if we consider 36 = 2187, taking s = 2, r = 2 and k = 1 we have 2 · 103 + 1 · 102 ≤ 2187 <
2 · 103 + 2 · 102 shows that the second leading digit of 2187 is 1.] Remark that if there is a second leading
digit, there should be a leading digit, so s ≥ 1. Let us rewrite it as

(10s+ k)10r ≤ 3n < (10s+ k + 1)10r.

Taking logarithms in base 10 and using the properties of logarithms (as log10(ab) = log10(a) + log10(b) and
log10 10r = r),

log10((10s+ k)10r) ≤ log10 3n < log10((k + 1)10r),

log10(10s+ k) + r ≤ n log10 3 < log10(10s+ k + 1) + r,

n log10 3 ∈ [r + log10(10s+ k), r + log10(10s+ k + 1)) . (9)
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Remark that since 1 ≤ s ≤ 9 and 0 ≤ k ≤ 9, we have

10 ≤ 10s+ k + 1 ≤ 100 ⇒ 1 ≤ log10(10s+ k + 1) ≤ 2.

Thus, for any fixed k, since log10(x) is an increasing function of x, the intervals [r + log10(10s + k), r +
log10(10s+ k+ 1) for 1 ≤ s ≤ 9 are all disjoint and contained in [r+ 1, r+ 2). Considering both sides of the
equation (9) modulo one, the second leading digit is k if there exist an integer 1 ≤ s ≤ 9 such that

(n log10 3 mod 1) ∈ Ik,s, where Ik,s = [log10(10s+ k)− 1, log10(10s+ k + 1)− 1] ,

or equivalently,

(n log10 3 mod 1) ∈ Ik, where Ik =

9⋃
s=1

Ik,s.

Notice that if we call α = log10 3, the sequence

(n log10 3 mod 1)n∈N = 0, log10 3 mod 1, 3 log10 3 mod 1, 3 log10 mod 1, . . .

= 0, log10 3 mod 1, log10 3 + log10 3 mod 1, 2 log10 3 + log10 3 mod 1, . . .

is the orbit O+
Rα

(0) of 0 under the rotation by α. Thus,

Card { 0 ≤ n < N such that the leading digit of 3n is k }
N

=

Card { 0 ≤ n < N such that (n log10 3 mod 1) ∈ Ik }
N

=

Card { 0 ≤ n < N such that Rnα(0) ∈ Ik }
N

=
1

N

N−1∑
n=0

χIk(Rnα(0)).

One can show that log10 3 is irrational, thus Rα is an irrational rotation and hence it is ergodic with respect
to the Lebesgue measure. By Remark 3.7.1 in the Lecture Notes (§ 3.7), the Birkhoff sums of an ergodic
rotation converge for all points to the integral, so

lim
N→∞

Card{0 ≤ n < N s.t. the leading digit of 3n is k}
N

= lim
N→∞

1

N

N−1∑
n=0

χIk(Rnα(0)) = λ(Ik).

Since each Ik is union of intervals Ik,s = [log10(10s+ k)− 1, log10(10s+ k + 1)− 1] that are all disjoint,

λ(Ik) = λ

(
9⋃
s=1

Ik,s

)
=

9∑
s=1

λ(Ik,s)

=

9∑
s=1

(log10(10s+ k + 1)− log10(10s+ k)) =

9∑
s=1

log10

(
1 +

1

10s+ k

)
.
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