Solutions to Problem Set 9

Feedback

Only about half of students submitted the solutions, and there was no major mistakes in the submitted solutions. A confusing point in the Problem 6 was that "measurable mixing" involves the intersections $T^{-n}(A) \cap B$, but "topological mixing" is about $T^{n}(A) \cap B$. Most people handled this issue well.

Solutions

Solution to Exercise 1

Part (a) Let $F:[0,1]^{2} \rightarrow[0,1]^{2}$ be the baker map and let

$$
Q=\left[\frac{i}{2^{N}}, \frac{i+1}{2^{N}}\right] \times\left[\frac{j}{2^{N}}, \frac{j+1}{2^{N}}\right],
$$

where $N, i, j \in \mathbb{N}$ and satify $0 \leq i, j<2^{N}$ and $0 \leq j<2^{N}$.
Let us describe the preimages $F^{-n}(Q)$. Recall that, from the definition of F and hence of F^{-1}, F^{-1} contracts horizontal length by a factor of $1 / 2$ and expands vertical heights by a factor of 2 . If $n \leq N, F^{-n}(A)$ consists of a unique rectangle, whose width is $\frac{1}{2^{N+n}}$ and whose height is $\frac{1}{2^{N-n}}$. For $n=N$ the rectangle has full height. If $n>N$, there are 2^{n-N} rectangles, each of width $\frac{1}{2^{N+n}}$ and height 1. Their spacing is $1 / 2^{n-N}$.

Part (b) To show that F is mixing with respect to the Lebesgue measure λ on $[0,1]^{2}$ it is enough to verify the mixing relation $\lim _{n \rightarrow \infty} \lambda\left(F^{-n}(A) \cap B\right)=\lambda(A) \lambda(B)$ when A, B are dyadic squares, that is product of dyadic intervals. Thus, let us assume that

$$
A=\left[\frac{i}{2^{N}}, \frac{i+1}{2^{N}}\right] \times\left[\frac{j}{2^{N}}, \frac{j+1}{2^{N}}\right], \quad B=\left[\frac{k}{2^{M}}, \frac{k+1}{2^{M}}\right] \times\left[\frac{l}{2^{M}}, \frac{l+1}{2^{M}}\right]
$$

where $N, M, i, k, k, l \in \mathbb{N}, 0 \leq i, j<2^{N}$ and $0 \leq k, l<2^{M}$.
By part (a), if $n>N$ the preimage $F^{-n}(A)$ contains 2^{n-N} rectangles, each of width $\frac{1}{2^{N+n}}$ and height 1 , with spacing is $1 / 2^{n-N}$. Thus, if $n-N \geq M$, the spacing is smaller than the width of B and the intersection $F^{-n}(A) \cap B$ consists of vertical strips of height equal to the full height $1 / 2^{M}$ of B (one can show that the intersection consists of full rectangles in $F^{-n}(A)$).

The number of such strips is equal to the width of B divided by the spacing, thus is equal to $\left(1 / 2^{M}\right) /\left(1 / 2^{n-N}\right)=2^{n-N} / 2^{M}$. The area of each strip is the width $1 / 2^{n+N}$ times the height of B, thus it is $1 / 2^{n+N+M}$. Thus, multiplying number of strips in the intersection times their area, one has

$$
\lambda\left(F^{-n}(A) \cap B\right)=\frac{2^{n-N}}{2^{M}} \frac{1}{2^{n+N+M}}=\frac{1}{\left(2^{N}\right)^{2}} \frac{1}{\left(2^{M}\right)^{2}}=\lambda(A) \lambda(B)
$$

Remark that we assume that $n-N \geq M$ to have a non-trivial intersection. Thus, for any $n \geq N+M$ the mixing relation holds with equality. This shows that F is mixing.

Solution to Exercise 4

Part (a) Let $\underline{p}=\left(p_{1}, \ldots, p_{N}\right)$ be a probability vector. Recall that the Bernoulli measure $\mu_{\underline{p}}$ given by \underline{p} is the measure which assigns to each cylinder $C_{n}\left(a_{0}, \ldots, a_{n}\right)$ the measure

$$
\begin{equation*}
\mu_{\underline{p}}\left(C_{n}\left(a_{0}, \ldots, a_{n}\right)\right)=p_{a_{0}} p_{a_{1}} \ldots p_{a_{n}} \tag{1}
\end{equation*}
$$

(By the Extension Theorem, this defines a measure on the whole σ-algebra \mathscr{B} generated by cylinders.) We want to show that \underline{p} is a special case of a Markov measure. Recall that if A is an $N \times N$

Solutions 9
transition matrix and P is an irreducible stochastic matrix compatible with A and p is a probability vector \underline{p} such that $\underline{p} P=\underline{p}$ (which exists by Perron-Frobenius theorem if A is irreducible), the Markov measure μ_{P} associated to P is the measure defined on each cylinder as

$$
\begin{equation*}
\mu_{P}\left(C_{n}\left(a_{0}, \ldots, a_{n}\right)\right)=p_{a_{0}} P_{a_{0} a_{1}} \cdots P_{a_{n-1} a_{n}} \tag{2}
\end{equation*}
$$

Thus, since we want the expressions (1) and (2) to coincide, let us consider the matrix P such that $P_{i j}=p_{j}$, that is

$$
P=\left(\begin{array}{cccc}
p_{1} & p_{2} & \ldots & p_{N} \tag{3}\\
p_{1} & p_{2} & \ldots & p_{N} \\
\vdots & & \ldots & \vdots \\
p_{1} & p_{2} & \ldots & p_{N}
\end{array}\right)
$$

This matrix is compatible with the transtition matrix A whose entries are all equal to 1 . Let us check that that $\underline{p} P=\underline{p}$:

$$
\sum_{i=1}^{N} p_{i} P_{i j}=\sum_{i=1}^{N} p_{i} p_{j}=p_{j}\left(\sum_{i=1}^{N} p_{i}\right)=p_{j}
$$

since $\sum_{i=1}^{N} p_{i}=1$ because \underline{p} is a probability vector. Thus \underline{p} is a left probability eigenvector for P defined as in (3). The corresponding Markov measure μ_{P} coincides with the Bernoulli measure $\mu_{\underline{p}}$ on cylinders since, from the definion $P_{i j}=p_{j}$ we have

$$
\mu_{P}\left(C_{n}\left(a_{0}, \ldots, a_{n}\right)\right)=p_{a_{0}} P_{a_{0} a_{1}} \cdots P_{a_{n-1} a_{n}}=p_{a_{0}} p_{a_{1}} \cdots p_{a_{n}}=\mu_{\underline{p}}\left(C_{n}\left(a_{0}, \ldots, a_{n}\right)\right)
$$

Thus, since $\mu_{\underline{p}}$ and μ_{P} coincide on cylinders, by the Extension theorem $\mu_{\underline{p}}=\mu_{P}$. This shows that Bernoulli measures are Markov measures.

Part (b) Let B be a non-negative $N \times N$ irreducible matrix, \underline{u} and \underline{v} be respectively left and right positive eigenvectors with the same eigenvalue λ, that is

$$
\underline{u} B=\lambda \underline{u} \quad \Leftrightarrow \quad \sum_{i=1}^{N} u_{i} B_{i j}=\lambda u_{j}, \quad B \underline{v}=\lambda \underline{v} \quad \Leftrightarrow \quad \sum_{j=1}^{N} B_{i j} v_{j}=\lambda v_{i}
$$

and let P be the $N \times N$ matrix and \underline{p} be the a vector in \mathbb{R}^{N} given by

$$
P_{i j}=\frac{B_{i j} v_{j}}{\lambda v_{i}}, \quad 1 \leq i \leq N ; \quad p_{i}=\frac{u_{i} v_{i}}{\sum_{i=1}^{N} u_{i} v_{i}}, \quad 1 \leq i \leq N
$$

Let us check that P is stochastic, that is all rows add up to 1 . For any $1 \leq i \leq N$, by using that $B \underline{v}=\lambda \underline{v}$ we have

$$
\sum_{j=1}^{N} P_{i j}=\sum_{j=1}^{N} \frac{B_{i j} v_{j}}{\lambda v_{i}}=\frac{\sum_{j=1}^{N} B_{i j} v_{j}}{\lambda v_{i}}=\frac{\lambda v_{i}}{\lambda v_{i}}=1
$$

thus P is stochastic. Let us now check that \underline{p} is a probability vector:

$$
\sum_{i=1}^{N} p_{i}=\sum_{i=1}^{N} \frac{u_{i} v_{i}}{\sum_{i=1}^{N} u_{i} v_{i}}=\frac{\sum_{i=1}^{N} u_{i} v_{i}}{\sum_{i=1}^{N} u_{i} v_{i}}=1
$$

Let us now check that \underline{p} is a left-eigenvalue for P, that is that $\underline{p} P=\lambda \underline{p}$. For each $1 \leq j \leq N$, by using that $\underline{u} B=\lambda \underline{u}$ we have

$$
\sum_{i=1}^{N} p_{i} P_{i j}=\sum_{i=1}^{N}\left(\frac{u_{i} v_{i}}{\sum_{i=1}^{N} u_{i} v_{i}}\right)\left(\frac{B_{i j} v_{j}}{\lambda v_{i}}\right)=\frac{v_{j} \sum_{i=1}^{N} u_{i} B_{i j}}{\lambda \sum_{i=1}^{N} u_{i} v_{i}}=\frac{v_{j}\left(\lambda u_{j}\right)}{\lambda \sum_{i=1}^{N} u_{i} v_{i}}=\frac{v_{j} u_{j}}{\sum_{i=1}^{N} u_{i} v_{i}}=p_{j}
$$

Thus, P defines a Markov measure.

Solution to Exercise 5

Part (a) Let A be an $N \times N$ transition matrix and $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$be the associated topological Markov chain. Recall that $C_{0}(i)$, where $1 \leq i \leq N$, is the cylinder of all sequences $\underline{x}=\left(x_{i}\right)_{i=0}^{\infty} \in \Sigma_{A}^{+}$ such that $x_{0}=i$. Thus,

$$
\sigma^{-n} C_{0}(i)=\left\{\underline{x} \in \Sigma_{A}^{+} \text {such that } \sigma^{n}(\underline{x})=\left(x_{i+n}\right)_{i=0}^{\infty} \in C_{0}(i)\right\}=\left\{\underline{x} \in \Sigma_{A}^{+} \text {such that } x_{n}=i\right\} .
$$

Hence, given $n \in \mathbb{N}$ and $i, j \in\{1, \ldots, N\}$,

$$
\sigma^{-n}\left(C_{0}(i)\right) \cap C_{0}(j)=\left\{\underline{x}=\left(x_{i}\right)_{i=0}^{\infty} \in \Sigma_{A}^{+}, \quad \text { such that } x_{n}=i \quad \text { and } \quad x_{0}=j\right\} .
$$

This set can be expressed as a union of admissible cylinders as follows:

$$
\begin{equation*}
\sigma^{-n}\left(C_{0}(i)\right) \cap C_{0}(j)=\bigcup_{\left(x_{1}, \ldots, x_{n-1}\right) \in\{1, \ldots, N\}^{n-1}} C_{n+1}\left(j, x_{1}, \ldots, x_{n-1}, i\right) \tag{4}
\end{equation*}
$$

Remark that the union can also be taken only the sequences $\left(x_{1}, \ldots, x_{n-1}\right) \in\{1, \ldots, N\}^{n-1}$ such that $\left(j, x_{1}, \ldots, x_{n-1}, i\right)$ is admissible, that is, if we set $x_{0}=j$ and $x_{n}=i$ we have $A_{x_{i} x_{i+1}}=1$ for all $0 \leq i \leq n-1$, but there is no difference in including all other non-admissible sequences $\left(x_{1}, \ldots, x_{n-1}\right)$ since the corresponding cylinders are empty).

Part (b) Let P is a stochastic matrix compatible with A and let \underline{p} be a probability vector which is a left eigenvector for P, so that $\underline{p} P=\underline{p}$. Let μ_{P} be the associated Markov measure on $\left(\Sigma_{A}^{+}, \mathscr{B}\right)$. Assume that $\sigma: \Sigma_{A}^{+} \rightarrow \Sigma_{A}^{+}$is mixing with respect to μ_{P}. Then, for all $1 \leq i, j \leq N$, if we apply the mixing relation to $A=C_{0}(i)$ and $B=C_{0}(j)$ that are cylinders and hence measurable sets, we have

$$
\lim _{n \rightarrow \infty} \mu\left(\sigma^{-n}\left(C_{0}(i)\right) \cap C_{0}(j)\right)=\mu\left(C_{0}(i)\right) \mu\left(C_{0}(j)\right)
$$

Remark that the cylinders $C_{n+1}\left(j, x_{1}, \ldots, x_{n-1}, i\right)$ are all disjoint. Thus, by (4) in Part (i) and the property of a measure

$$
\begin{aligned}
\left.\mu_{P}\left(\sigma^{-n}\left(C_{0}(i)\right) \cap C_{0}(j)\right)\right) & =\mu_{P}\left(\bigcup_{\left(x_{1}, \ldots, x_{n-1}\right) \in\{1, \ldots, N\}^{n-1}} C_{n+1}\left(j, x_{1}, \ldots, x_{n-1}, i\right)\right) \\
& =\sum_{x_{1}=1}^{N} \sum_{x_{2}=1}^{N} \cdots \sum_{x_{n-1}=1}^{N} \mu_{P}\left(C_{n+1}\left(j, x_{1}, \ldots, x_{n-1}, i\right)\right)
\end{aligned}
$$

Thus, recalling the definition of Markov measure of a cylinder,

$$
\mu_{P}\left(\sigma^{-n}\left(C_{0}(i)\right) \cap C_{0}(j)\right)=\sum_{x_{1}=1}^{N} \sum_{x_{2}=1}^{N} \ldots \sum_{x_{n-1}=1}^{N} p_{j} P_{j x_{1}} P_{x_{1} x_{2}} \ldots P_{x_{i} x_{i+1}} \ldots P_{x_{n-1} i} .
$$

Since by definition of product of matrices

$$
\begin{gathered}
P_{j i}^{n}=\sum_{x_{1}=1}^{N} \sum_{x_{2}=1}^{N} \ldots \sum_{x_{n-1}=1}^{N} P_{j x_{1}} P_{x_{1} x_{2}} \ldots P_{x_{i} x_{i+1}} \ldots P_{x_{n-1} i}, \\
\mu_{P}\left(\sigma^{-n}\left(C_{0}(i)\right) \cap C_{0}(j)\right)=p_{j} P_{j i}^{n} .
\end{gathered}
$$

Moreover, since also by definition of μ_{P}, we have

$$
\mu\left(C_{0}(i)\right)=p_{i}, \quad \mu\left(C_{0}(j)\right)=p_{j}
$$

the mixing relation gives

$$
\lim _{n \rightarrow \infty} p_{j} P_{j i}^{n}=\lim _{n \rightarrow \infty} \mu_{P}\left(\sigma^{-n}\left(C_{0}(i)\right) \cap C_{0}(j)\right)=\mu\left(C_{0}(i)\right) \mu\left(C_{0}(j)\right)=p_{i} p_{j}
$$

This shows that for all $1 \leq i, j \leq N$ we have $\lim _{n \rightarrow \infty} P_{j i}^{n}=p_{i}$.

Solution to Exercise 6

Let us assume that X is at the same time a topological space with the distance d and a measure space (X, \mathscr{A}, μ) with the Borela $\sigma-$ algebra \mathscr{B} and let $T: X \rightarrow X$ mixing with respect to μ. Let us also assume that $\mu(U)>0$ for any non-empty open set U and prove that T is topologically mixing. Let U, V be two non-empty open sets. Since open sets belong to \mathscr{B}, by the mixing relation,

$$
\lim _{n \rightarrow \infty} \mu\left(T^{-n} V \cap U\right)=\mu(U) \mu(V)
$$

Moreover, by assumption on μ, since U, V are open and non-empty, both $\mu(U)$ and $\mu(V)$ are positive, so $\mu(U) \mu(V)>0$. Thus, taking $\epsilon=\mu(U) \mu(V) / 2$, by definition of limit, there exists $N>0$ such that for any $n \geq N$,

$$
\mu\left(T^{-n} V \cap U\right) \geq \frac{\mu(U) \mu(V)}{2}>0 \quad \forall n \geq N
$$

In particular, this shows that for any $n \geq N$ we have $T^{-n} V \cap U \neq \emptyset$ (since otherwise, $\mu\left(T^{-n} U \cap V\right)=$ $\mu(\emptyset)$ would be zero). Thus for any $n \geq N$ there exists $x_{n} \in T^{-n}(V) \cap U$, so $T^{n}\left(x_{n}\right) \in V \cap T^{n} U$. This shows that $T^{n} U \cap V \neq \emptyset$ for any $n \geq N$ and hence that T is topologically mixing.

