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1. Let T2 = R2/Z2. For α = (α1, α2) ∈ R2, let R : T2 → T2 be the map

R(x) = R ((x1, x2)) = (x1 + α1 mod 1, x2 + α2 mod 1).

Denote by d be the distance on T2 defined by

d(x, y) = min
m∈Z2

||x− y +m||,

where || · || denotes the maximum norm given by ||x|| = ||(x1, x2)|| = max(|x1|, |x2|).
(Note that this is not the standard Euclidean norm.)

(a) (9 marks)

i. Write down the full orbit OR(x) of x under R.

ii. Show that R is an isometry with respect to d.

iii. Let Per(R) ⊂ T2 be the set of periodic points for R. Prove that

Per(R) =

{
∅ if α /∈ Q2,
T2 if α ∈ Q2.

(b) (8 marks)

i. Define what it means for a topological dynamical system f : X → X to be
topologically mixing.

ii. Is R topologically mixing? Justify your answer.

[Hint: you may use that the rotation Rα : T→ T is not topologically mixing.]

(c) (8 marks)

i. Prove that, if α /∈ Q2, then the points of OR(x) are distinct for every x ∈ T2.

ii. Asssume α /∈ Q2. Using (i) or otherwise, prove that for any x = (x1, x2) ∈ R2

and any N positive integer there exists 1 ≤ n ≤ N2 such that

d(Rn
α(x), x) ≤ 1

N
.
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2. Let T2 = R2/Z2. For α ∈ R, let T : T2 → T2 be the map given by

T (x1, x2) = (x1 + α mod 1, x2 + x1 mod 1).

You can use that T preserves the Lebesgue measure λ on T2 and also that for any n ∈ N:

T n(x1, x2) = (x1 + nα mod 1, x2 + nx1 +
n(n− 1)

2
α mod 1).

(a) (6 marks)

Let S : X → X be a measure preserving dynamical system on (X,A , µ).

i. Define what is means that S is ergodic with respect to µ.

ii. State a sufficient condition for S to be ergodic with respect to µ involving functions
in L2(X,µ).

(b) (8 marks)

Assume that α /∈ Q. Using Fourier series, show that T : T2 → T2 is ergodic with
respect to λ. Justify your answer.

(c) (11 marks )

Assume for this part that α = 1
2
.

i. Show that for every (x, y) ∈ T2 the orbitO+
T (x, y) is contained in the union C1∪C2

of the two circles

C1 = {x} × T, C2 =

{
x+

1

2
mod 1

}
× T.

ii. Is T ergodic with respect to λ? Justify your answer.

iii. Prove that for any irrational x ∈ [0, 1) the orbit O+
T (x, y) is dense in C1 ∪ C2.
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3. Let σ : ΣN → ΣN be the shift map, where ΣN = {1, . . . , N}Z is the full two-sided shift
space on N symbols, with the distance

d(x, y) =
∞∑

k=−∞

|xk − yk|
ρ|k|

, where x = (xk)
∞
k=−∞, y = (yk)

+∞
k=−∞, ρ > 2N − 1.

You can use that that ball B(x, ρk) is equal to the cylinder set C−k,k(x−k, . . . , xk) for any
k ∈ N and x ∈ ΣN .

(a) (6 marks)

Fix a positive integer n and ε > 0.

i. Define what it means for a set S ⊂ ΣN to be an (n, ε)−separated set for σ.
Include the definition of the distance dn.

ii. State a formula for the topological entropy htop(σ) in terms of the cardinality of
separated sets.

(b) (13 marks)

i. Describe the set Pern(σ) of periodic points of period n for σ and compute its
cardinality.

ii. Prove that the set of periodic points Per(σ) = ∪n∈NPern(σ) is dense in [0, 1].

iii. Fix a positive integer n and 0 < ε < 1.
Let S = Pern(σ) and show that S is (n, ε)-separated.

iv. Conclude that htop(σ) ≥ logN . Justify your answer.

(c) (6 marks)

We say that the forward orbit O+
σ (x) of a point x ∈ ΣN is recurrent if there exists an

increasing subsequence (nk)k∈N such that

d(σnk(x), x)
k→∞−−−→ 0.

Construct a point x ∈ ΣN whose full orbit Oσ(x) is dense in ΣN , but whose forward
orbit O+

σ (x) is NOT recurrent. Justify your answer.
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4. Let X and Y be two non-empty sets and let f : X → X and g : Y → Y be two maps.

(a) (4 marks)

i. State the definition of a conjugacy ψ : Y → X between f and g.

ii. State the definition of a semi-conjugacy ψ : Y → X between f and g.

(b) (7 marks)

i. Provide an example of f : X → X and g : Y → Y which are semi-conjugate but
not conjugate. Justify you answer.

ii. Provide an example of f : X → X which is semi-conjugate to every map g : Y →
Y . Justify you answer.

(c) (14 marks)

Let X = [0, 1), Y = {0, 1}N, and consider the shift map σ : Y → Y defined by
σ((ai)

∞
i=1) = (ai)

∞
i=2.

i. Let

x =
∞∑
i=1

xi
2i
, xi ∈ {0, 1} for every i ≥ 1

be the the binary expansion of x.
State what it means for x to be normal in base two.

ii. State the Birkhoff ergodic theorem for a map T : X → X that preserves the
Lebesgue measure on X = [0, 1) (T here is not necessarily ergodic).

iii. Find a map T : X → X which (1) preserves the Lebesgue measure on X and (2)
is semi-conjugate to the shift map σ. Justify your answer.

iv. Prove that almost every number x ∈ [0, 1] is normal in base two. You may use
ergodicity without proof.
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