UNIVERSITY OF BRISTOL

Mock exam paper for examination for the Degrees of B.Sc. and M.Sci. (Level 3)

DYNAMICAL SYSTEMS and ERGODIC THEORY

MATH 36206

(Paper Code MATH-36206)

 $2~{\rm hours}$ and $30~{\rm minutes}$

This paper contains FOUR questions All FOUR answers will be used for assessment. Calculators are **not** permitted in this examination.

On this examination, the marking scheme is indicative and is intended only as a guide to the relative weighting of the questions.

Cont...

1. Let $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$. For $\underline{\alpha} = (\alpha_1, \alpha_2) \in \mathbb{R}^2$, let $R : \mathbb{T}^2 \to \mathbb{T}^2$ be the map

 $R(\underline{x}) = R((x_1, x_2)) = (x_1 + \alpha_1 \mod 1, x_2 + \alpha_2 \mod 1).$

Denote by d be the distance on \mathbb{T}^2 defined by

$$d(\underline{x},\underline{y}) = \min_{\underline{m} \in \mathbb{Z}^2} \|\underline{x} - \underline{y} + \underline{m}\|$$

where $\|\cdot\|$ denotes the maximum norm given by $\|\underline{x}\| = \|(x_1, x_2)\| = \max(|x_1|, |x_2|).$ (Note that this is not the standard Euclidean norm.)

- (a) (**9 marks**)
 - i. Write down the full orbit $\mathcal{O}_R(\underline{x})$ of \underline{x} under R.
 - ii. Show that R is an isometry with respect to d.
 - iii. Let $Per(R) \subset \mathbb{T}^2$ be the set of periodic points for R. Prove that

$$Per(R) = \begin{cases} \emptyset & \text{if } \underline{\alpha} \notin \mathbb{Q}^2, \\ \mathbb{T}^2 & \text{if } \underline{\alpha} \in \mathbb{Q}^2. \end{cases}$$

- (b) (**8 marks**)
 - i. Define what it means for a topological dynamical system $f:X\to X$ to be topologically mixing.
 - ii. Is R topologically mixing? Justify your answer.

[*Hint*: you may use that the rotation $R_{\alpha} : \mathbb{T} \to \mathbb{T}$ is not topologically mixing.]

- (c) (8 marks)
 - i. Prove that, if $\underline{\alpha} \notin \mathbb{Q}^2$, then the points of $\mathcal{O}_R(\underline{x})$ are distinct for every $\underline{x} \in \mathbb{T}^2$.
 - ii. Assume $\underline{\alpha} \notin \mathbb{Q}^2$. Using (i) or otherwise, prove that for any $\underline{x} = (x_1, x_2) \in \mathbb{R}^2$ and any N positive integer there exists $1 \leq n \leq N^2$ such that

$$d(R^n_{\underline{\alpha}}(\underline{x}), \underline{x}) \le \frac{1}{N}$$

Cont...

2. Let $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$. For $\alpha \in \mathbb{R}$, let $T : \mathbb{T}^2 \to \mathbb{T}^2$ be the map given by

 $T(x_1, x_2) = (x_1 + \alpha \mod 1, x_2 + x_1 \mod 1).$

You can use that T preserves the Lebesgue measure λ on \mathbb{T}^2 and also that for any $n \in \mathbb{N}$:

$$T^{n}(x_{1}, x_{2}) = (x_{1} + n\alpha \mod 1, \ x_{2} + nx_{1} + \frac{n(n-1)}{2}\alpha \mod 1).$$

(a) (**6 marks**)

Let $S: X \to X$ be a measure preserving dynamical system on (X, \mathscr{A}, μ) .

- i. Define what is means that S is ergodic with respect to μ .
- ii. State a sufficient condition for S to be ergodic with respect to μ involving functions in $L^2(X, \mu)$.
- (b) (8 marks)

Assume that $\alpha \notin \mathbb{Q}$. Using Fourier series, show that $T : \mathbb{T}^2 \to \mathbb{T}^2$ is ergodic with respect to λ . Justify your answer.

(c) (**11 marks**)

Assume for this part that $\alpha = \frac{1}{2}$.

i. Show that for every $(x, y) \in \mathbb{T}^2$ the orbit $\mathcal{O}^+_T(x, y)$ is contained in the union $C_1 \cup C_2$ of the two circles

$$C_1 = \{x\} \times \mathbb{T}, \qquad C_2 = \left\{x + \frac{1}{2} \mod 1\right\} \times \mathbb{T}.$$

- ii. Is T ergodic with respect to λ ? Justify your answer.
- iii. Prove that for any irrational $x \in [0, 1)$ the orbit $\mathcal{O}_T^+(x, y)$ is dense in $C_1 \cup C_2$.

- Cont...
- 3. Let $\sigma : \Sigma_N \to \Sigma_N$ be the shift map, where $\Sigma_N = \{1, \ldots, N\}^{\mathbb{Z}}$ is the full *two-sided* shift space on N symbols, with the distance

$$d(\underline{x},\underline{y}) = \sum_{k=-\infty}^{\infty} \frac{|x_k - y_k|}{\rho^{|k|}}, \quad \text{where} \quad \underline{x} = (x_k)_{k=-\infty}^{\infty}, \quad \underline{y} = (y_k)_{k=-\infty}^{+\infty}, \quad \rho > 2N - 1.$$

You can use that that ball $B(\underline{x}, \rho^k)$ is equal to the cylinder set $C_{-k,k}(x_{-k}, \ldots, x_k)$ for any $k \in \mathbb{N}$ and $\underline{x} \in \Sigma_N$.

(a) (**6 marks**)

Fix a positive integer n and $\epsilon > 0$.

- i. Define what it means for a set $S \subset \Sigma_N$ to be an (n, ϵ) -separated set for σ . Include the definition of the distance d_n .
- ii. State a formula for the topological entropy $h_{top}(\sigma)$ in terms of the cardinality of separated sets.
- (b) (**13 marks**)
 - i. Describe the set $Per_n(\sigma)$ of periodic points of period n for σ and compute its cardinality.
 - ii. Prove that the set of periodic points $Per(\sigma) = \bigcup_{n \in \mathbb{N}} Per_n(\sigma)$ is dense in [0, 1].
 - iii. Fix a positive integer n and $0 < \epsilon < 1$. Let $S = Per_n(\sigma)$ and show that S is (n, ϵ) -separated.
 - iv. Conclude that $h_{top}(\sigma) \ge \log N$. Justify your answer.
- (c) (**6 marks**)

We say that the forward orbit $\mathcal{O}_{\sigma}^+(\underline{x})$ of a point $\underline{x} \in \Sigma_N$ is *recurrent* if there exists an increasing subsequence $(n_k)_{k \in \mathbb{N}}$ such that

$$d(\sigma^{n_k}(\underline{x}), \underline{x}) \xrightarrow{k \to \infty} 0.$$

Construct a point $\underline{x} \in \Sigma_N$ whose full orbit $\mathcal{O}_{\sigma}(\underline{x})$ is dense in Σ_N , but whose forward orbit $\mathcal{O}_{\sigma}^+(\underline{x})$ is NOT recurrent. Justify your answer.

Cont...

- 4. Let X and Y be two non-empty sets and let $f: X \to X$ and $g: Y \to Y$ be two maps.
 - (a) (**4 marks**)
 - i. State the definition of a *conjugacy* $\psi : Y \to X$ between f and g.
 - ii. State the definition of a *semi-conjugacy* $\psi: Y \to X$ between f and g.
 - (b) (**7 marks**)
 - i. Provide an example of $f: X \to X$ and $g: Y \to Y$ which are semi-conjugate but not conjugate. Justify you answer.
 - ii. Provide an example of $f: X \to X$ which is semi-conjugate to every map $g: Y \to Y$. Justify you answer.
 - (c) (**14 marks**)

Let $X = [0,1), Y = \{0,1\}^{\mathbb{N}}$, and consider the shift map $\sigma : Y \to Y$ defined by $\sigma((a_i)_{i=1}^{\infty}) = (a_i)_{i=2}^{\infty}$.

i. Let

$$x = \sum_{i=1}^{\infty} \frac{x_i}{2^i}, \qquad x_i \in \{0, 1\} \quad \text{for every } i \ge 1$$

be the binary expansion of x.

State what it means for x to be normal in base two.

- ii. State the Birkhoff ergodic theorem for a map $T : X \to X$ that preserves the Lebesgue measure on X = [0, 1) (T here is not necessarily ergodic).
- iii. Find a map $T: X \to X$ which (1) preserves the Lebesgue measure on X and (2) is semi-conjugate to the shift map σ . Justify your answer.
- iv. Prove that almost every number $x \in [0, 1]$ is normal in base two. You may use ergodicity without proof.