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1. (a) i. OR(x) = {(x1 + kα1 mod 1, x2 + kα2 mod 1) | k ∈ Z}.
ii. We have

d(R(x), R(y)) = min
m∈Z2

|x+ α− (y + α) +m| = min
m∈Z2

|x− y +m| = d(x, y),

for all x, y ∈ T2, and hence R is an isometry.

iii. A point x is periodic iff Rk(x) = x for some k ≥ 1. That is, we are looking for a
solution of the system of two equations

x1 + kα1 = x1 mod 1, x2 + kα2 = x2 mod 1,

which are equivalent to

kα1 = 0 mod 1, kα2 = 0 mod 1.

There is no solution if α1 or α2 are irrational, so the set of fixed points is the
empty set in this case. If both α1 and α2 are rational, we may write α1 = p1

q
and

α2 = p2
q

where gcd(p1, p2, q) = 1. In this case we have a solution to the above
equation if k is any multiple of q. This is independent of the choice of x and thus
the set of periodic points is T2.

(b) i. A topological dynamical system f : X → X is called topologically mixing if for
any pair U, V of non-empty open sets there exists N ∈ N such that for all n ≥ N
we have fn(U) ∩ V 6= ∅.

ii. R is not topologically mixing. Proof: Take U = A × T2, V = B × T2 where
A,B ⊂ T2 are open, non-empty intervals. Then U, V are open and non-empty.
Furthermore Rn(U)∩V = ∅ if and only if Rn

α1
(A)∩B = ∅, where Rα1(x) = x+α1

mod 1 is a one-dimensional rotation. Since Rα1 is not topologically mixing, there
exists two non-empty open intervals A,B such that for infinitely many n we have
Rn
α1

(A) ∩ B = ∅. Hence Rn(U) ∩ V = ∅ for the same infinite sequence of n.
Therefore R is not topologically mixing. QED.
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(c) i. Assume first that α1 6∈ Q. Then, x1 + kα1 = x1 + k′α1 mod 1 if and only if
(k − k′)α1 = 0 mod 1. Since α1 6∈ Q, this implies k = k′. Hence the first
components of the points in the orbit are distinct, and hence the points themselves
must be distinct. If α1 ∈ Q, then by assumption α2 6∈ Q, and the above argument
yields the same conclusion for the second components. QED.

ii. We apply the pigeon hole principle. Partition T2 into N2 squares, each with
sides 1

N
. Amongst the N2 + 1 points Rk(x) (k = 0, . . . , N2) there must be at

least one square that contains two points, say Rk(x) and R`(x) with 0 ≤ k <
` ≤ N2. Because they are in the same square, both the difference between
their x and y coordinates is less than 1/N . Thus, recalling the definition of
distance, d(R`(x), Rk(x)) ≤ 1

N
. Since R is an isometry we have d(R`−k, x) =

d(R`(x), Rk(x)) ≤ 1
N

. Note that 1 ≤ `− k ≤ N2. This yields the desired inequal-
ity for n := `− k.

2. (a) i. The transformation S : X → X defined on the measure space (X,A , µ), where
µ is a probability measure, is ergodic with respect to µ if for any invariant set
A ∈ A (that is a set such that S−1(A) = A) either µ(A) = 0 or µ(A) = 1.

ii. To prove that a measure-preserving transformation S preserving the probability
measure µ is ergodic with respect to µ it is enough to show that any function
f ∈ L2(X,µ) that is invariant under S (that is f ◦S = f µ-almost everywhere) is
constant µ-almost everywhere.

(b) To show that the map T for α irrational is ergodic with respect to λ, let us verify the
sufficient condition for ergodicity in (a) ii. Let f ∈ L2(T2, λ). We can represent f as
a 2−dimensional Fourier series, that is

f(x1, x2) =
∑

n=(n1,n2)∈Z2

cne
2πi(n1x1+n2x2), (1)

where the equality holds in the L2 sense and the Fourier coefficients are

cn = cn1,n2 =

∫ 1

0

∫ 1

0

f(x1, x2)e
−2πi(n1x1+n2x2)dx1dx2.

Evaluating the Fourier expansion at T (x1, x2) = (x1+α−k1, x1+x2−k2) (where k1, k2
are respectively the integer parts of x1 +α and x1 +x2), since e−2πin1k1 = e−2πin2k2 = 1
because k1n1 and k2n2 are integers, we get

f ◦ T (x1, x2) =
∑

(n1,n2)∈Z2

cn1,n2e
2πi[n1(x1+α)+n2(x1+x2)]

=
∑

(n1,n2)∈Z2

e2πin1αcn1,n2e
2πi(n1+n2)x1e2πin2x2 .

(2)

By invariance of f , since f ◦ T = f , we can equate (1) and (2):∑
(n1,n2)∈Z2

cne
2πi(n1x1+n2x2) =

∑
(n1,n2)∈Z2

e2πin1αcne
2πi(n1+n2)x1e2πin2x2 .

By uniqueness of Fourier coefficients, cn1,n2 = e2πin1αcn1+n2,n2 . Thus, we get by induc-
tion that |cn1,n2| = |cn1+kn2,n2| for any k ∈ N. If n2 6= 0, the norm of (n1+kn2, n2) grows
as k →∞. Thus, since the value of |cn1+kn2,n2| is independent on k but by the Riemann
Lebesgue Lemma (which applies since λ(T2) < +∞ and thus L2(T2, λ) ⊂ L1(T2, λ)),

2



this shows that it has to be zero. Thus, for k = 0 we must have |cn1,n2| = 0 for any
n2 6= 0. If n2 = 0, we get cn1,0 = e2πin1αcn1,0 or equivalently (1 − e2πin1α)cn1,0 = 0.
Since α is irrational and the orbit of an irrational rotation consist of distinct points,
we have that {n1α} 6= 0 for any n1 6= 0. Thus, e2πin1α 6= 1 and cn1,0 = 0 for any
n1 6= 0. Thus, the only non-zero term in the Fourier expansion is possibly c0,0, so f is
constant. By part (a)i, we conclude that T is ergodic.

(c) i. Set α = 1
2
. Given (x, y) ∈ T2, consider the two circles

C1 = {x} × T, C2 = {x+
1

2
mod 1} × T.

To show that the orbit O+
T (x, y) is contained in union of the two circles C1, C2, it

is enough to prove that if we write T n(x, y) := (xn, yn), the x coordinate xn of the
nth point in the orbit is either equal to x or x + 1/2. We are given that, for any
n ∈ N, we have xn = x+ nα mod 1 = x+ n/2 mod 1 for α = 1/2. n/2 mod 1.
Thus, xn = x if n is even or xn = x+ 1/2 if n is odd, concluding the proof.

ii. No, T is NOT ergodic with respect to λ. To see this, consider for example the set

A =

[
0,

1

4

]
× T ∪

[
1

2
,
3

4

]
× T.

Then A is measurable (it is union of rectangles) and invariant. Indeed, given any
(x, y) ∈ A, as in part i, T−1(x, y) = (x′, y′) where x′ = x or x′ = x− 1/2 mod 1.
Thus, since if x ∈ [0, 1/4] ∪ [1/2, 3/4] also x − 1/2 mod 1 ∈ [0, 1/4] ∪ [1/2, 3/4],
A is invariant. Furthemore, since A is the union of two rectangles of area 1/4,
λ(A) = 1/2. Thus T has an invariant set of non trivial measure.

iii. For α = 1/2 and any n ∈ N, by the formula for T n(x, y) which we are given, we
have that

T n(x, y) = (x+
n

2
, y + nx+

n(n− 1)

4
mod 1).

Remark that if n = 4k + i for k ∈ N and 0 ≤ i ≤ 3, then

n(n− 1)

4
mod 1 =

(4k + i)(4k + i− 1)

4
mod 1 =

i2 − i
4

mod 1.

Thus, we have that

T 4k+i(x, y) =


(x, y + 4kx mod 1) if i = 0,
(x+ 1

2
mod 1, y + (4k + 1)x mod 1) if i = 1,

(x, y + (4k + 2)x+ 1
2

mod 1) if i = 2,
(x+ 1

2
mod 1, y + (4k + 3)x+ 1

2
mod 1) if i = 3.

Consider for example only points of the form T 4k(x, y) ∈ O+(x, y) as k ∈ N. Since
the y-coordinate of T 4k(x, y) = (x, y+ 4kx mod 1) consists of points in the orbit
O+
R4x

(y) = {y + 4kx mod 1, k ∈ N} of the rotation R4x and x is irrational, the
points {T 4k(x, y), k ∈ N} ∈ O+(x, y) are dense in {x} × T. Conversely, looking
at points of the form T 4k+3(x, y) ∈ O+(x, y) as k ∈ N, we have T 4k(x, y) = (x+ 1

2

mod 1, y+(4k+3)x+ 1
2

mod 1). Since the points y+(4k+3)x+ 1
2

belong to the
orbit O+

R4kx
(y + 3x + 1/2) of the rotation R4kx by 4kx and x is irrational, these

points are dense on the circle {x+ 1
2
} × T. Thus O+

T (x, y) is dense in C1 ∪ C2.
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3. (a) i. We say that S is an (n, ε)−separated set for T if for any x, y ∈ T2 such that x 6= y
we have that

dn(x, y) = max
0≤k<n

d(T k(x), T k(y)) < ε.

ii. The topological entropy of T is given by

htop(T ) = lim
ε→0

lim sup
n→∞

log(Sep(n, ε))

n
,

where Sep(n, ε) is the maximal cardinality of an (n, ε)−separated set.

(b) i. The set Pern(σ) of periodic points of period n for σ consists of all sequences
x ∈ ΣN whose entries are repeated periodically with period n, that is xi+n = xi
for any i ∈ Z. Since once the digits x0, . . . , xn−1 are assigned a sequence with this
property is completely determined, the cardinality of Pern(σ) is Nn.

ii. To show that Per(σ) is dense in ΣN , we need to show that in any non-empty
open set U ⊂ ΣN there is a periodic point. By definition of open sets, every non-
empty open set contains a ball with respect to the distance d and, by shrinking
the radius if necessary, we can assume that it contains a ball of radius 1/ρk. Since
ρ > 2N − 1, we know that any ball of this form is a cylinder C−k,k(a−k, . . . , ak)
for some digits a−k, . . . , ak ∈ {0, . . . , N − 1}2k+1. Let x ∈ ΣN be the sequence
obtained repearing periodically the digits a−k, . . . , ak, that is xi+(2k+1)n = ai for
all n ∈ Z and |i| ≤ k. Then x ∈ Σ+

N is periodic of period 2k + 1 and it belongs
to C−k,k(a−k, . . . , ak). Since we constructed a periodic point in every non-empty
open set, periodic points are dense.

iii. Fix a positive integer n and let 0 < ε < 1 and S = Pern(σ). To show that S is
(n, ε)−separated, consider any two distinct x, y ∈ S. Since x and y are periodic
points of period n, we must have xi 6= yi for some 0 ≤ i < n. Thus, since σ acts
as a shift on the digits and σi(x), σi(y) start with xi, yi respectively, we have that

dn(x, y) = max
0≤j<n

d(σj(x), σj(y)) ≥ d(σi(x), σi(y))

=
+∞∑

k=−∞

|xi+k − yi+k|
ρ|k|

≥ |xi − yi| ≥ 1 > ε.

This shows that S is (n, ε)−separated.

iv. For any given ε > 0, since Sep(n, ε) is the maximal cardinality of an (n, ε)-
separated set and by Part iii Pern(σ) is (n, ε)-separated,

Sep(n, ε) ≥ Card(Pern(σ)) = Nn,

where the last equality follows by Part i. Thus, using the definition of topological
entropy recalled in Part (a)ii,

htop(σ, ε) = lim sup
n→∞

log(Sep(n, ε))

n
≥ lim sup

n→∞

n logN

n
= logN.

Since this quantity is independent on ε, htop(σ) = limε→0 htop(σ, ε) ≥ logN .

(c) Let a = (ai)i∈N be an enumeration all possible sequences with 2k + 1 digits in
{0, 1, . . . , N−1} as k grows. Define x such that x−i = ai for any i ∈ N and xi 6= x0 = a0
for any i > 1. Let us first show that the full orbit Oσ(x) is dense. As argued be-
fore, it is enough to show that it visits any cylinder, say C−k,k(b−k, . . . , bk). Since the
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string bk, . . . , b−k appears by construction in a, say an+i = bi for |i| ≤ k and hence
x−n+i = b−i for |i| ≤ k, we have that σ−n(x) ∈ C−k,k(b−k, . . . , bk) as desired. To
see that the forward orbit Oσ(x) is not recurrent, it is enough to remark that since
xn 6= x0 for any n > 1,

d(σn(x, x)) ≥ |xn − x0|
20

≥ 1,

thus there cannot be any increasing sequence (nk)k∈N so that d(σnk(x), x)→ 0.

4. (a) i. A conjugacy ψ : Y → X between f and g is an invertible map ψ (injective and
surjective) such that ψ ◦ g = f ◦ ψ (this can also be written as ψg = fψ), i.e. for
all y ∈ Y we have ψ(g(y)) = f(ψ(y)), or, equivalently, such that the diagram
below commutes:

Y
g−−−→ Yyψ yψ

X
f−−−→ X

ii. A semi-conjugacy ψ : Y → X between f and g is a surjective map ψ such that
ψg = fψ, i.e. for all y ∈ Y we have ψ(g(y)) = f(ψ(y)).

(b) i. Many possible answers; here is simplest: Let X = {0}, Y = {0, 1}, f the identity
map and g the permutation of 0 and 1. f and g cannot be conjugate since there
is no invertible map Y → X. The map ψ : Y → X, defined by ψ(y) = 0 for all
y ∈ Y , is surjective and defines a semi-conjucacy because: ψ(g(y)) = 0 for all
y ∈ Y and f(ψ(y)) = f(0) = 0 for all y ∈ Y .

ii. Let X = {0} and f the identity. The map ψ : Y → X defined by ψ(y) = 0 is
surjective and we have ψ(g(y)) = 0 and f(ψ(y)) = f(0) = 0.

(c) i. The point x =
∑∞

i=1
xi
2i

is called normal in base two if for every k ∈ Y we have
limn→∞

1
n
Card{1 ≤ i ≤ n : xi = k} = 1

2
. OR: x is called normal in base two if

the frequency of the occurance of each digit exists and is equal to 1
2
.

ii. Denote by µ the Lebesgue measure on X. Then for every h ∈ L1(X,µ) the limit
h(x) = 1

n
limn→∞

∑n−1
k=0 h(fk(x)) exists for µ-almost every x ∈ X and satisfies

h ◦ f = h for µ-almost every x ∈ X. Furthermore
∫
X
hdµ =

∫
X
hdµ.

iii. Define f by f(x) = 2x mod 1. Define the map ψ : Y → X by ψ((ai)
∞
i=1) =∑∞

i=1
ai
2i

, and note that ψ(g((ai)
∞
i=1)) = ψ((ai)

∞
2=1) =

∑∞
i=2

ai
2i

mod 1 and

f(ψ((ai)
∞
i=1)) = f(

∞∑
i=1

ai
2i

) = 2
∞∑
i=1

ai
2i

=
∞∑
i=1

ai
2i−1

=
∞∑
i=2

ai
2i

mod 1.

Therefore ψ ◦ g = f ◦ ψ. Furthermore ψ is surjective since for every x ∈ [0, 1] we
find ai such that x =

∑∞
i=1

ai
2i

. To see this note that for 0 ≤ x < 1 we may choose

ai =

{
0 if 2i−1x ∈ [0, 1

2
) mod 1

1 if 2i−1x ∈ [1
2
, 2
2
) mod 1

and a1 = a2 = · · · = 1 for x = 1. [Candidates might already have shown this
in part (i); in this case award marks in this section.] This proves that ψ is a
semiconjugacy.

iv. In view of (iii) we have

Card{1 ≤ i ≤ n : xi = k} =
n∑
i=1

χ[ k
2
, k+1

2
)(2

i−1x) =
n−1∑
i=0

χ[ k
2
, k+1

2
)(2

ix)
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where χ[ k
2
, k+1

2
) is the characteristic function of the interval [k

2
, k+1

2
) mod 1, which

is in L1([0, 1], µ). By the Birkhoff ergodic theorem and ergodicity of f we have

lim
n→∞

1

n

n−1∑
i=0

χ[ k
2
, k+1

2
)(2

ix) =

∫
χ[ k

2
, k+1

2
)(x)dx =

1

2
.
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