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Ogr(z) = {(x1 + kay mod 1, x + kay mod 1) | k € Z}.
We have
d(R(z),R(y)) = min [z +a — (y + o) + m| = min lz —y +m| =d(z,y),

meZ?

for all z,y € T?, and hence R is an isometry.

A point z is periodic iff R*(z) = x for some k& > 1. That is, we are looking for a
solution of the system of two equations

r1+ kay =27 mod 1, Ty + kas =29 mod 1,
which are equivalent to
kap =0 mod 1, kay =0 mod 1.

There is no solution if oy or as are irrational, so the set of fixed points is the
empty set in this case. If both a; and as are rational, we may write a; = % and
ay = % where gcd(pi, pa,q) = 1. In this case we have a solution to the above
equation if k is any multiple of ¢. This is independent of the choice of z and thus
the set of periodic points is T?2.

. A topological dynamical system f : X — X is called topologically mixing if for

any pair U,V of non-empty open sets there exists N € N such that for all n > N
we have f"(U)NV # .

R is not topologically mixing. Proof: Take U = A x T?, V = B x T? where
A, B C T? are open, non-empty intervals. Then U,V are open and non-empty.
Furthermore R™(U)NV = if and only if R (A)NB = 0, where Ry, (z) = 2+
mod 1 is a one-dimensional rotation. Since R, is not topologically mixing, there
exists two non-empty open intervals A, B such that for infinitely many n we have
R (A)N B = 0. Hence R*(U) NV = { for the same infinite sequence of n.
Therefore R is not topologically mixing. QED.



(¢) 1. Assume first that «; € Q. Then, 21 + kay = x; + K'a; mod 1 if and only if
(k — K)oy = 0 mod 1. Since oy ¢ Q, this implies k& = k. Hence the first
components of the points in the orbit are distinct, and hence the points themselves
must be distinct. If a; € Q, then by assumption as € Q, and the above argument
yields the same conclusion for the second components. QED.

ii. We apply the pigeon hole principle. Partition T? into N? squares, each with
sides . Amongst the N* + 1 points R*(z) (k = 0,..., N?) there must be at
least one square that contains two points, say R*(z) and R‘(z) with 0 < k <
¢ < N2. Because they are in the same square, both the difference between
their x and y coordinates is less than 1/N. Thus, recalling the definition of
distance, d(R‘(z), R*(z)) < +. Since R is an isometry we have d(R'™* z) =
d(R*(z), R*(z)) < +. Note that 1 < ¢ —k < N?. This yields the desired inequal-

ity for n:= ¢ — k.

(a) i The transformation S : X — X defined on the measure space (X, <7, 1), where
[t is a probability measure, is ergodic with respect to p if for any invariant set
A € o (that is a set such that S7!(A) = A) either u(A) =0 or pu(A) = 1.
ii. To prove that a measure-preserving transformation S preserving the probability
measure f is ergodic with respect to u it is enough to show that any function
f € L*(X,u) that is invariant under S (that is foS = f pu-almost everywhere) is
constant p-almost everywhere.

(b) To show that the map T for « irrational is ergodic with respect to A, let us verify the
sufficient condition for ergodicity in (a) ii. Let f € L*(T? )\). We can represent f as
a 2—dimensional Fourier series, that is

flzy,20) = Z el mTtneT2) (1)

n=(n1,n2)€Z>

where the equality holds in the L? sense and the Fourier coefficients are

1 1
— — —2mi(n1x1+n2x
Cn = Cny o —/ / [y, xg)e” Frimatnez) g qg,
o Jo

Evaluating the Fourier expansion at T'(z1, x2) = (x1+a—ky, x1+x3— ko) (where ky, ko
are respectively the integer parts of 21+« and z1 +x3), since e~ 27kt = g=2minzkz — 9
because kin; and kong are integers, we get

foT(xy,x2) = Z Cny g€ T @) Fn2 (@1 +22)]

(n1,n2)€Z?

— § e27rin1acn1’n2 627ri(n1+n2)zl e27rin2x2 ]

(n1,n2)€Z?

By invariance of f, since foT = f, we can equate (1) and (2):

2 Cn€27r7,(n1x1 +naxa) _ E /‘ e27rzn1acn62m(n1 +n2)x1 e27rzn2:z:2 .

(nl,ng)EZ2 (nl,ng)GZQ

By uniqueness of Fourier coefficients, ¢, n, = ™%y, 4nyny- Thus, we get by induc-

tion that |cuy ny| = |Cny+knsa.ms| for any k& € N. If ny # 0, the norm of (n;+kna, ng) grows
as k — 0o. Thus, since the value of |¢,, 4 kny 1, | 1S independent on & but by the Riemann
Lebesgue Lemma (which applies since A\(T?) < +oo and thus L*(T? \) C L'(T? \)),



this shows that it has to be zero. Thus, for £ = 0 we must have |¢,, »,| = 0 for any
ng # 0. If ng = 0, we get ¢,y 0 = ¥, ¢ or equivalently (1 — e*™™)c, 4 = 0.
Since « is irrational and the orbit of an irrational rotation consist of distinct points,
we have that {n;a} # 0 for any n; # 0. Thus, e*™* % 1 and ¢,, o = 0 for any
n1 # 0. Thus, the only non-zero term in the Fourier expansion is possibly ¢, so f is
constant. By part (a)i, we conclude that 7" is ergodic.

(¢) i

ii.

1il.

Set oo = % Given (x,y) € T?, consider the two circles
1
Cy ={z} x T, 02:{.1'—|—§ mod 1} x T.

To show that the orbit Of(z,y) is contained in union of the two circles Cy, Cy, it
is enough to prove that if we write 7"(x,y) := (2, y»), the z coordinate x,, of the
n' point in the orbit is either equal to z or x + 1/2. We are given that, for any
n € N, we have z,, = r+na mod 1 =2+n/2 mod 1 for o =1/2. n/2 mod 1.
Thus, x, = z if n is even or x,, = z + 1/2 if n is odd, concluding the proof.

No, T is NOT ergodic with respect to A\. To see this, consider for example the set

1 13
A= |:O’Z_l:| x T U [5,1:| x T.

Then A is measurable (it is union of rectangles) and invariant. Indeed, given any
(z,y) € A, as in part i, T (z,y) = (2/,y') where 2’ =z or ' =2 — 1/2 mod 1.
Thus, since if z € [0,1/4] U [1/2,3/4] also  —1/2 mod 1 € [0,1/4] U [1/2,3/4],
A is invariant. Furthemore, since A is the union of two rectangles of area 1/4,
A(A) = 1/2. Thus T has an invariant set of non trivial measure.

For o = 1/2 and any n € N, by the formula for 7"(z,y) which we are given, we
have that .
n n(n —

Remark that if n = 4k + i for k € N and 0 < i < 3, then

mod 1).

—1 Ak +1)(dk +1—1 2 —

n(n—1) modlz( +2)(4 +izl) mod1:Z4Z mod 1.
Thus, we have that

(r,y +4kzr mod 1) it i =0,
T+ (g ) = (934—% mod 1,y + (4k + 1)z mod 1) ifi=1,
Y= (z,y+ 4k +2)z+ 1 mod 1) if i =2,
rz+ 5 mod l,y+ +o)r+ 35 mo i =3.
: d1 4k + 3)z + 5 d1) ifi=3

Consider for example only points of the form T (z,y) € O*(z,y) as k € N. Since
the y-coordinate of T*(z,y) = (z,y +4kx mod 1) consists of points in the orbit
OE4z(y) = {y + 4kr mod 1,k € N} of the rotation R4, and z is irrational, the
points {T%(z,y),k € N} € O (x,y) are dense in {z} x T. Conversely, looking
at points of the form T**3(z,y) € O (x,y) as k € N, we have T%(z,y) = (¢ + %
mod 1,y+ (4k+3)z+5 mod 1). Since the points y+ (4k+3)z + 3 belong to the
orbit OR; (y + 3x + 1/2) of the rotation Ry, by 4kx and z is irrational, these

kx

points are dense on the circle {z 4+ 3} x T. Thus OF (z,y) is dense in C; U Cs.
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. We say that S is an (n, €)—separated set for T'if for any z,y € T? such that z # y

we have that
dn(z,y) = max d(T"(z), T"(y)) < e.

- 0<k<n

The topological entropy of 7' is given by

htop(T) = lim lim sup w’

=0 nooo n

where Sep(n, €) is the mazimal cardinality of an (n, €)—separated set.

. The set Per,(c) of periodic points of period n for o consists of all sequences

z € X whose entries are repeated periodically with period n, that is z;1,, = x;
for any ¢ € Z. Since once the digits xq, ..., z,_1 are assigned a sequence with this
property is completely determined, the cardinality of Per, (o) is N™.

To show that Per(o) is dense in Xy, we need to show that in any non-empty
open set U C Xy there is a periodic point. By definition of open sets, every non-
empty open set contains a ball with respect to the distance d and, by shrinking
the radius if necessary, we can assume that it contains a ball of radius 1/p*. Since
p > 2N — 1, we know that any ball of this form is a cylinder C_y x(a—_g, ..., ax)
for some digits a_g,...,a; € {0,...,N — 1}?**1 Tet 2 € ¥y be the sequence
obtained repearing periodically the digits a_g, ..., ax, that is z;; (or41)n = a; for
all n € Z and |i| < k. Then z € X}, is periodic of period 2k + 1 and it belongs
to C_gr(a_g,...,ar). Since we constructed a periodic point in every non-empty
open set, periodic points are dense.

Fix a positive integer n and let 0 < € < 1 and S = Per,(c). To show that S is
(n, €)—separated, consider any two distinct 2,y € S. Since x and y are periodic
points of period n, we must have x; # y; for some 0 < ¢ < n. Thus, since o acts
as a shift on the digits and ¢*(z), o (y) start with z;, y; respectively, we have that

dn(z,y) = max d(o”(z),07(y)) = d(o"(2), 0" (y))

0<ji<n
o |Tick — Yir]
k — Yi+k
=D —om o zlmimulz1>e
k=—oc0 p

This shows that S is (n, €)—separated.

iv. For any given € > 0, since Sep(n,¢€) is the maximal cardinality of an (n,€)-
separated set and by Part iii Per,(c) is (n, €)-separated,
Sep(n,e) > Card(Per,(c)) = N",
where the last equality follows by Part i. Thus, using the definition of topological
entropy recalled in Part (a)ii,
log(S log N
hiop(0, €) = limsup M > lim sup nogl _ log N.
n—»00 n n—»00
Since this quantity is independent on €, hyopy(0) = lim._,g hyop(o, €) > log N.
(c) Let a = (a;)iey be an enumeration all possible sequences with 2k + 1 digits in

{0,1,..., N—1} as k grows. Define z such that x_; = a; for any i € Nand x; # zq = ag
for any ¢ > 1. Let us first show that the full orbit O,(z) is dense. As argued be-
fore, it is enough to show that it visits any cylinder, say C_x (b, . .., bg). Since the



4.

(a)

string by, ...,b_j appears by construction in a, say a,y; = b; for |i| < k and hence

Topy; = by for |i| < k, we have that 07" (z) € C_gx(b_g,...,b;) as desired. To

see that the forward orbit O,(z) is not recurrent, it is enough to remark that since

T, # o for any n > 1,

|z, — o]
20

thus there cannot be any increasing sequence (ny)gen so that d(o™(x),z) — 0.

d(o"(z,2)) > > 1,

i. A conjugacy ¢ 1Y — X between f and g is an invertible map 1 (injective and
surjective) such that ¢ o g = f o4 (this can also be written as ¢g = f1)), i.e. for
all y € Y we have ¥(g(y)) = f(¥(y)), or, equivalently, such that the diagram

below commutes:
y 25 v

ool

x Iy x

ii. A semi-conjugacy ¢ 1Y — X between f and g is a surjective map 1 such that

g = fi, ie. for all y € Y we have ¥ (g(y)) = f(¢(y)).

i. Many possible answers; here is simplest: Let X = {0}, Y = {0, 1}, f the identity
map and g the permutation of 0 and 1. f and ¢ cannot be conjugate since there
is no invertible map Y — X. The map ¢ : Y — X, defined by ¥ (y) = 0 for all
y € Y, is surjective and defines a semi-conjucacy because: ¥ (g(y)) = 0 for all
yeYand f(¢(y)) = f(0)=0forall y € Y.

ii. Let X = {0} and f the identity. The map ¢ : Y — X defined by ¢ (y) = 0 is
surjective and we have ¥ (g(y)) = 0 and f(¥(y)) = f(0) = 0.

i. The point & = )7, & is called normal in base two if for every k € Y we have
lim,, 00 %C’a’rd{l <i<n:z =k} = % OR: z is called normal in base two if
the frequency of the occurance of each digit exists and is equal to 1

ii. Denote by p the Lebesgue measure on X. Then for every h € Ll(X ) the limit
hiz) = Llimy 00 Do éh(fk( )) exists for p-almost every z € X and satisfies
ho f = h for y-almost every z € X. Furthermore Ix hdp = [ hdp.

ili. Define f by f(x) = 2z mod 1. Define the map ¢ : Y — X by ¢((q;)2,) =

> ooo1 5, and note that 1¥(g((a;)2,)) = ¥((a:)32,) = >0y % mod 1 and

F((@:)i2y) Z% = 2?_222% mod 1.
= =2

i=1 i=1
Therefore 1) o g = f o 1. Furthermore ¢ is surjective since for every x € [0, 1] we

find a; such that x = 221 5+ 'To see this note that for 0 < x < 1 we may choose

0 if2'z€(0,3) mod1
a; = .
1 if27'ze[3,2) modl

and a; = ay = --- = 1 for z = 1. [Candidates might already have shown this
in part (i); in this case award marks in this section.] This proves that ¢ is a
semiconjugacy.

iv. In view of (iii) we have
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where Xk w41, is the characteristic function of the interval (£, 51) mod 1, which

2
2
is in L([0, 1], 4). By the Birkhoff ergodic theorem and ergodicity of f we have

k
27

1
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nl_glon E Xit, k+) ) /X[§7Ic2)(x) r =g



