DYNAMICAL SYSTEMS and ERGODIC THEORY
 MATH 36206
 (Paper Code MATH-36206)

2 hours and 30 minutes

1. (a) i. $\mathcal{O}_{R}(\underline{x})=\left\{\left(x_{1}+k \alpha_{1} \bmod 1, x_{2}+k \alpha_{2} \bmod 1\right) \mid k \in \mathbb{Z}\right\}$.
ii. We have

$$
d(R(\underline{x}), R(\underline{y}))=\min _{\underline{m} \in \mathbb{Z}^{2}}|\underline{x}+\underline{\alpha}-(\underline{y}+\underline{\alpha})+\underline{m}|=\min _{\underline{m} \in \mathbb{Z}^{2}}|\underline{x}-\underline{y}+\underline{m}|=d(\underline{x}, \underline{y}),
$$

for all $\underline{x}, \underline{y} \in \mathbb{T}^{2}$, and hence R is an isometry.
iii. A point \underline{x} is periodic iff $R^{k}(\underline{x})=\underline{x}$ for some $k \geq 1$. That is, we are looking for a solution of the system of two equations

$$
x_{1}+k \alpha_{1}=x_{1} \quad \bmod 1, \quad x_{2}+k \alpha_{2}=x_{2} \quad \bmod 1,
$$

which are equivalent to

$$
k \alpha_{1}=0 \quad \bmod 1, \quad k \alpha_{2}=0 \quad \bmod 1
$$

There is no solution if α_{1} or α_{2} are irrational, so the set of fixed points is the empty set in this case. If both α_{1} and α_{2} are rational, we may write $\alpha_{1}=\frac{p_{1}}{q}$ and $\alpha_{2}=\frac{p_{2}}{q}$ where $\operatorname{gcd}\left(p_{1}, p_{2}, q\right)=1$. In this case we have a solution to the above equation if k is any multiple of q. This is independent of the choice of \underline{x} and thus the set of periodic points is \mathbb{T}^{2}.
(b) i. A topological dynamical system $f: X \rightarrow X$ is called topologically mixing if for any pair U, V of non-empty open sets there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $f^{n}(U) \cap V \neq \emptyset$.
ii. R is not topologically mixing. Proof: Take $U=A \times \mathbb{T}^{2}, V=B \times \mathbb{T}^{2}$ where $A, B \subset \mathbb{T}^{2}$ are open, non-empty intervals. Then U, V are open and non-empty. Furthermore $R^{n}(U) \cap V=\emptyset$ if and only if $R_{\alpha_{1}}^{n}(A) \cap B=\emptyset$, where $R_{\alpha_{1}}(x)=x+\alpha_{1}$ $\bmod 1$ is a one-dimensional rotation. Since $R_{\alpha_{1}}$ is not topologically mixing, there exists two non-empty open intervals A, B such that for infinitely many n we have $R_{\alpha_{1}}^{n}(A) \cap B=\emptyset$. Hence $R^{n}(U) \cap V=\emptyset$ for the same infinite sequence of n. Therefore R is not topologically mixing. QED.
(c) i. Assume first that $\alpha_{1} \notin \mathbb{Q}$. Then, $x_{1}+k \alpha_{1}=x_{1}+k^{\prime} \alpha_{1} \bmod 1$ if and only if $\left(k-k^{\prime}\right) \alpha_{1}=0 \bmod 1$. Since $\alpha_{1} \notin \mathbb{Q}$, this implies $k=k^{\prime}$. Hence the first components of the points in the orbit are distinct, and hence the points themselves must be distinct. If $\alpha_{1} \in \mathbb{Q}$, then by assumption $\alpha_{2} \notin \mathbb{Q}$, and the above argument yields the same conclusion for the second components. QED.
ii. We apply the pigeon hole principle. Partition \mathbb{T}^{2} into N^{2} squares, each with sides $\frac{1}{N}$. Amongst the $N^{2}+1$ points $R^{k}(\underline{x})\left(k=0, \ldots, N^{2}\right)$ there must be at least one square that contains two points, say $R^{k}(\underline{x})$ and $R^{\ell}(\underline{x})$ with $0 \leq k<$ $\ell \leq N^{2}$. Because they are in the same square, both the difference between their x and y coordinates is less than $1 / N$. Thus, recalling the definition of distance, $d\left(R^{\ell}(\underline{x}), R^{k}(\underline{x})\right) \leq \frac{1}{N}$. Since R is an isometry we have $d\left(R^{\ell-k}, \underline{x}\right)=$ $d\left(R^{\ell}(\underline{x}), R^{k}(\underline{x})\right) \leq \frac{1}{N}$. Note that $1 \leq \ell-k \leq N^{2}$. This yields the desired inequality for $n:=\ell-k$.
2. (a) i. The transformation $S: X \rightarrow X$ defined on the measure space (X, \mathscr{A}, μ), where μ is a probability measure, is ergodic with respect to μ if for any invariant set $A \in \mathscr{A}$ (that is a set such that $S^{-1}(A)=A$) either $\mu(A)=0$ or $\mu(A)=1$.
ii. To prove that a measure-preserving transformation S preserving the probability measure μ is ergodic with respect to μ it is enough to show that any function $f \in L^{2}(X, \mu)$ that is invariant under S (that is $f \circ S=f \mu$-almost everywhere) is constant μ-almost everywhere.
(b) To show that the map T for α irrational is ergodic with respect to λ, let us verify the sufficient condition for ergodicity in (a) ii. Let $f \in L^{2}\left(\mathbb{T}^{2}, \lambda\right)$. We can represent f as a 2 -dimensional Fourier series, that is

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=\sum_{\underline{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} c_{\underline{n}} e^{2 \pi i\left(n_{1} x_{1}+n_{2} x_{2}\right)} \tag{1}
\end{equation*}
$$

where the equality holds in the L^{2} sense and the Fourier coefficients are

$$
c_{\underline{n}}=c_{n_{1}, n_{2}}=\int_{0}^{1} \int_{0}^{1} f\left(x_{1}, x_{2}\right) e^{-2 \pi i\left(n_{1} x_{1}+n_{2} x_{2}\right)} \mathrm{d} x_{1} \mathrm{~d} x_{2} .
$$

Evaluating the Fourier expansion at $T\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha-k_{1}, x_{1}+x_{2}-k_{2}\right)$ (where k_{1}, k_{2} are respectively the integer parts of $x_{1}+\alpha$ and $x_{1}+x_{2}$), since $e^{-2 \pi i n_{1} k_{1}}=e^{-2 \pi i n_{2} k_{2}}=1$ because $k_{1} n_{1}$ and $k_{2} n_{2}$ are integers, we get

$$
\begin{align*}
f \circ T\left(x_{1}, x_{2}\right) & =\sum_{\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} c_{n_{1}, n_{2}} e^{2 \pi i\left[n_{1}\left(x_{1}+\alpha\right)+n_{2}\left(x_{1}+x_{2}\right)\right]} \tag{2}\\
& =\sum_{\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} e^{2 \pi i n_{1} \alpha} c_{n_{1}, n_{2}} e^{2 \pi i\left(n_{1}+n_{2}\right) x_{1}} e^{2 \pi i n_{2} x_{2}} .
\end{align*}
$$

By invariance of f, since $f \circ T=f$, we can equate (1) and (2):

$$
\sum_{\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} c_{\underline{n}} e^{2 \pi i\left(n_{1} x_{1}+n_{2} x_{2}\right)}=\sum_{\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}} e^{2 \pi i n_{1} \alpha} c_{\underline{n}} e^{2 \pi i\left(n_{1}+n_{2}\right) x_{1}} e^{2 \pi i n_{2} x_{2}}
$$

By uniqueness of Fourier coefficients, $c_{n_{1}, n_{2}}=e^{2 \pi i n_{1} \alpha} c_{n_{1}+n_{2}, n_{2}}$. Thus, we get by induction that $\left|c_{n_{1}, n_{2}}\right|=\left|c_{n_{1}+k n_{2}, n_{2}}\right|$ for any $k \in \mathbb{N}$. If $n_{2} \neq 0$, the norm of $\left(n_{1}+k n_{2}, n_{2}\right)$ grows as $k \rightarrow \infty$. Thus, since the value of $\left|c_{n_{1}+k n_{2}, n_{2}}\right|$ is independent on k but by the Riemann Lebesgue Lemma (which applies since $\lambda\left(\mathbb{T}^{2}\right)<+\infty$ and thus $L^{2}\left(\mathbb{T}^{2}, \lambda\right) \subset L^{1}\left(\mathbb{T}^{2}, \lambda\right)$),
this shows that it has to be zero. Thus, for $k=0$ we must have $\left|c_{n_{1}, n_{2}}\right|=0$ for any $n_{2} \neq 0$. If $n_{2}=0$, we get $c_{n_{1}, 0}=e^{2 \pi i n_{1} \alpha} c_{n_{1}, 0}$ or equivalently $\left(1-e^{2 \pi i n_{1} \alpha}\right) c_{n_{1}, 0}=0$. Since α is irrational and the orbit of an irrational rotation consist of distinct points, we have that $\left\{n_{1} \alpha\right\} \neq 0$ for any $n_{1} \neq 0$. Thus, $e^{2 \pi i n_{1} \alpha} \neq 1$ and $c_{n_{1}, 0}=0$ for any $n_{1} \neq 0$. Thus, the only non-zero term in the Fourier expansion is possibly $c_{0,0}$, so f is constant. By part (a)i, we conclude that T is ergodic.
i. Set $\alpha=\frac{1}{2}$. Given $(x, y) \in \mathbb{T}^{2}$, consider the two circles

$$
C_{1}=\{x\} \times \mathbb{T}, \quad C_{2}=\left\{x+\frac{1}{2} \quad \bmod 1\right\} \times \mathbb{T}
$$

To show that the orbit $\mathcal{O}_{T}^{+}(x, y)$ is contained in union of the two circles C_{1}, C_{2}, it is enough to prove that if we write $T^{n}(x, y):=\left(x_{n}, y_{n}\right)$, the x coordinate x_{n} of the $n^{\text {th }}$ point in the orbit is either equal to x or $x+1 / 2$. We are given that, for any $n \in \mathbb{N}$, we have $x_{n}=x+n \alpha \bmod 1=x+n / 2 \bmod 1$ for $\alpha=1 / 2 . n / 2 \bmod 1$. Thus, $x_{n}=x$ if n is even or $x_{n}=x+1 / 2$ if n is odd, concluding the proof.
ii. No, T is NOT ergodic with respect to λ. To see this, consider for example the set

$$
A=\left[0, \frac{1}{4}\right] \times \mathbb{T} \cup\left[\frac{1}{2}, \frac{3}{4}\right] \times \mathbb{T} .
$$

Then A is measurable (it is union of rectangles) and invariant. Indeed, given any $(x, y) \in A$, as in part $\mathrm{i}, T^{-1}(x, y)=\left(x^{\prime}, y^{\prime}\right)$ where $x^{\prime}=x$ or $x^{\prime}=x-1 / 2 \bmod 1$. Thus, since if $x \in[0,1 / 4] \cup[1 / 2,3 / 4]$ also $x-1 / 2 \bmod 1 \in[0,1 / 4] \cup[1 / 2,3 / 4]$, A is invariant. Furthemore, since A is the union of two rectangles of area $1 / 4$, $\lambda(A)=1 / 2$. Thus T has an invariant set of non trivial measure.
iii. For $\alpha=1 / 2$ and any $n \in \mathbb{N}$, by the formula for $T^{n}(x, y)$ which we are given, we have that

$$
T^{n}(x, y)=\left(x+\frac{n}{2}, y+n x+\frac{n(n-1)}{4} \bmod 1\right) .
$$

Remark that if $n=4 k+i$ for $k \in \mathbb{N}$ and $0 \leq i \leq 3$, then

$$
\frac{n(n-1)}{4} \bmod 1=\frac{(4 k+i)(4 k+i-1)}{4} \quad \bmod 1=\frac{i^{2}-i}{4} \quad \bmod 1
$$

Thus, we have that

$$
T^{4 k+i}(x, y)= \begin{cases}(x, y+4 k x \bmod 1) & \text { if } i=0 \\ \left(x+\frac{1}{2} \bmod 1, y+(4 k+1) x \bmod 1\right) & \text { if } i=1 \\ \left(x, y+(4 k+2) x+\frac{1}{2} \bmod 1\right) & \text { if } i=2 \\ \left(x+\frac{1}{2} \bmod 1, y+(4 k+3) x+\frac{1}{2} \bmod 1\right) & \text { if } i=3\end{cases}
$$

Consider for example only points of the form $T^{4 k}(x, y) \in \mathcal{O}^{+}(x, y)$ as $k \in \mathbb{N}$. Since the y-coordinate of $T^{4 k}(x, y)=(x, y+4 k x \bmod 1)$ consists of points in the orbit $\mathcal{O}_{R_{4 x}}^{+}(y)=\{y+4 k x \bmod 1, k \in \mathbb{N}\}$ of the rotation $R_{4 x}$ and x is irrational, the points $\left\{T^{4 k}(x, y), k \in \mathbb{N}\right\} \in \mathcal{O}^{+}(x, y)$ are dense in $\{x\} \times \mathbb{T}$. Conversely, looking at points of the form $T^{4 k+3}(x, y) \in \mathcal{O}^{+}(x, y)$ as $k \in \mathbb{N}$, we have $T^{4 k}(x, y)=\left(x+\frac{1}{2}\right.$ $\left.\bmod 1, y+(4 k+3) x+\frac{1}{2} \bmod 1\right)$. Since the points $y+(4 k+3) x+\frac{1}{2}$ belong to the orbit $\mathcal{O}_{R_{4 k x}}^{+}(y+3 x+1 / 2)$ of the rotation $R_{4 k x}$ by $4 k x$ and x is irrational, these points are dense on the circle $\left\{x+\frac{1}{2}\right\} \times \mathbb{T}$. Thus $\mathcal{O}_{T}^{+}(x, y)$ is dense in $C_{1} \cup C_{2}$.
3. (a) i. We say that S is an (n, ϵ)-separated set for T if for any $\underline{x}, \underline{y} \in \mathbb{T}^{2}$ such that $\underline{x} \neq \underline{y}$ we have that

$$
d_{n}(\underline{x}, \underline{y})=\max _{0 \leq k<n} d\left(T^{k}(\underline{x}), T^{k}(\underline{y})\right)<\epsilon
$$

ii. The topological entropy of T is given by

$$
h_{\text {top }}(T)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{\log (S e p(n, \epsilon))}{n}
$$

where $\operatorname{Sep}(n, \epsilon)$ is the maximal cardinality of an (n, ϵ)-separated set.
(b) i. The set $\operatorname{Per}_{n}(\sigma)$ of periodic points of period n for σ consists of all sequences $\underline{x} \in \Sigma_{N}$ whose entries are repeated periodically with period n, that is $x_{i+n}=x_{i}$ for any $i \in \mathbb{Z}$. Since once the digits x_{0}, \ldots, x_{n-1} are assigned a sequence with this property is completely determined, the cardinality of $\operatorname{Per}_{n}(\sigma)$ is N^{n}.
ii. To show that $\operatorname{Per}(\sigma)$ is dense in Σ_{N}, we need to show that in any non-empty open set $U \subset \Sigma_{N}$ there is a periodic point. By definition of open sets, every nonempty open set contains a ball with respect to the distance d and, by shrinking the radius if necessary, we can assume that it contains a ball of radius $1 / \rho^{k}$. Since $\rho>2 N-1$, we know that any ball of this form is a cylinder $C_{-k, k}\left(a_{-k}, \ldots, a_{k}\right)$ for some digits $a_{-k}, \ldots, a_{k} \in\{0, \ldots, N-1\}^{2 k+1}$. Let $\underline{x} \in \Sigma_{N}$ be the sequence obtained repearing periodically the digits a_{-k}, \ldots, a_{k}, that is $x_{i+(2 k+1) n}=a_{i}$ for all $n \in \mathbb{Z}$ and $|i| \leq k$. Then $\underline{x} \in \Sigma_{N}^{+}$is periodic of period $2 k+1$ and it belongs to $C_{-k, k}\left(a_{-k}, \ldots, a_{k}\right)$. Since we constructed a periodic point in every non-empty open set, periodic points are dense.
iii. Fix a positive integer n and let $0<\epsilon<1$ and $S=\operatorname{Per}_{n}(\sigma)$. To show that S is (n, ϵ)-separated, consider any two distinct $\underline{x}, \underline{y} \in S$. Since \underline{x} and \underline{y} are periodic points of period n, we must have $x_{i} \neq y_{i}$ for some $0 \leq i<n$. Thus, since σ acts as a shift on the digits and $\sigma^{i}(\underline{x}), \sigma^{i}(\underline{y})$ start with x_{i}, y_{i} respectively, we have that

$$
\begin{aligned}
d_{n}(\underline{x}, \underline{y}) & =\max _{0 \leq j<n} d\left(\sigma^{j}(\underline{x}), \sigma^{j}(\underline{y})\right) \geq d\left(\sigma^{i}(\underline{x}), \sigma^{i}(\underline{y})\right) \\
& =\sum_{k=-\infty}^{+\infty} \frac{\left|x_{i+k}-y_{i+k}\right|}{\rho^{|k|}} \geq\left|x_{i}-y_{i}\right| \geq 1>\epsilon .
\end{aligned}
$$

This shows that S is (n, ϵ)-separated.
iv. For any given $\epsilon>0$, since $\operatorname{Sep}(n, \epsilon)$ is the maximal cardinality of an (n, ϵ) separated set and by Part iii $\operatorname{Per}_{n}(\sigma)$ is (n, ϵ)-separated,

$$
\operatorname{Sep}(n, \epsilon) \geq \operatorname{Card}\left(\operatorname{Per}_{n}(\sigma)\right)=N^{n}
$$

where the last equality follows by Part i. Thus, using the definition of topological entropy recalled in Part (a)ii,

$$
h_{t o p}(\sigma, \epsilon)=\limsup _{n \rightarrow \infty} \frac{\log (\operatorname{Sep}(n, \epsilon))}{n} \geq \limsup _{n \rightarrow \infty} \frac{n \log N}{n}=\log N .
$$

Since this quantity is independent on $\epsilon, h_{\text {top }}(\sigma)=\lim _{\epsilon \rightarrow 0} h_{\text {top }}(\sigma, \epsilon) \geq \log N$.
(c) Let $\underline{a}=\left(a_{i}\right)_{i \in \mathbb{N}}$ be an enumeration all possible sequences with $2 k+1$ digits in $\{0,1, \ldots, N-1\}$ as k grows. Define \underline{x} such that $x_{-i}=a_{i}$ for any $i \in \mathbb{N}$ and $x_{i} \neq x_{0}=a_{0}$ for any $i>1$. Let us first show that the full orbit $\mathcal{O}_{\sigma}(\underline{x})$ is dense. As argued before, it is enough to show that it visits any cylinder, say $C_{-k, k}\left(b_{-k}, \ldots, b_{k}\right)$. Since the
string b_{k}, \ldots, b_{-k} appears by construction in \underline{a}, say $a_{n+i}=b_{i}$ for $|i| \leq k$ and hence $x_{-n+i}=b_{-i}$ for $|i| \leq k$, we have that $\sigma^{-n}(\underline{x}) \in C_{-k, k}\left(b_{-k}, \ldots, b_{k}\right)$ as desired. To see that the forward orbit $\mathcal{O}_{\sigma}(\underline{x})$ is not recurrent, it is enough to remark that since $x_{n} \neq x_{0}$ for any $n>1$,

$$
d\left(\sigma^{n}(\underline{x}, \underline{x})\right) \geq \frac{\left|x_{n}-x_{0}\right|}{2^{0}} \geq 1
$$

thus there cannot be any increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ so that $d\left(\sigma^{n_{k}}(\underline{x}), \underline{x}\right) \rightarrow 0$.
4. (a) i. A conjugacy $\psi: Y \rightarrow X$ between f and g is an invertible map ψ (injective and surjective) such that $\psi \circ g=f \circ \psi$ (this can also be written as $\psi g=f \psi$), i.e. for all $y \in Y$ we have $\psi(g(y))=f(\psi(y))$, or, equivalently, such that the diagram below commutes:

ii. A semi-conjugacy $\psi: Y \rightarrow X$ between f and g is a surjective map ψ such that $\psi g=f \psi$, i.e. for all $y \in Y$ we have $\psi(g(y))=f(\psi(y))$.
(b) i. Many possible answers; here is simplest: Let $X=\{0\}, Y=\{0,1\}, f$ the identity map and g the permutation of 0 and $1 . f$ and g cannot be conjugate since there is no invertible map $Y \rightarrow X$. The map $\psi: Y \rightarrow X$, defined by $\psi(y)=0$ for all $y \in Y$, is surjective and defines a semi-conjucacy because: $\psi(g(y))=0$ for all $y \in Y$ and $f(\psi(y))=f(0)=0$ for all $y \in Y$.
ii. Let $X=\{0\}$ and f the identity. The map $\psi: Y \rightarrow X$ defined by $\psi(y)=0$ is surjective and we have $\psi(g(y))=0$ and $f(\psi(y))=f(0)=0$.
(c) i. The point $x=\sum_{i=1}^{\infty} \frac{x_{i}}{2^{i}}$ is called normal in base two if for every $k \in Y$ we have $\lim _{n \rightarrow \infty} \frac{1}{n} \operatorname{Card}\left\{1 \leq i \leq n: x_{i}=k\right\}=\frac{1}{2}$. OR: x is called normal in base two if the frequency of the occurance of each digit exists and is equal to $\frac{1}{2}$.
ii. Denote by μ the Lebesgue measure on X. Then for every $h \in L^{1}(X, \mu)$ the limit $\bar{h}(x)=\frac{1}{n} \lim _{n \rightarrow \infty} \sum_{k=0}^{n-1} h\left(f^{k}(x)\right)$ exists for μ-almost every $x \in X$ and satisfies $\bar{h} \circ f=\bar{h}$ for μ-almost every $x \in X$. Furthermore $\int_{X} \bar{h} d \mu=\int_{X} h d \mu$.
iii. Define f by $f(x)=2 x \bmod 1$. Define the map $\psi: Y \rightarrow X$ by $\psi\left(\left(a_{i}\right)_{i=1}^{\infty}\right)=$ $\sum_{i=1}^{\infty} \frac{a_{i}}{2^{i}}$, and note that $\psi\left(g\left(\left(a_{i}\right)_{i=1}^{\infty}\right)\right)=\psi\left(\left(a_{i}\right)_{2=1}^{\infty}\right)=\sum_{i=2}^{\infty} \frac{a_{i}}{2^{i}} \bmod 1$ and

$$
f\left(\psi\left(\left(a_{i}\right)_{i=1}^{\infty}\right)\right)=f\left(\sum_{i=1}^{\infty} \frac{a_{i}}{2^{i}}\right)=2 \sum_{i=1}^{\infty} \frac{a_{i}}{2^{i}}=\sum_{i=1}^{\infty} \frac{a_{i}}{2^{i-1}}=\sum_{i=2}^{\infty} \frac{a_{i}}{2^{i}} \bmod 1 .
$$

Therefore $\psi \circ g=f \circ \psi$. Furthermore ψ is surjective since for every $x \in[0,1]$ we find a_{i} such that $x=\sum_{i=1}^{\infty} \frac{a_{i}}{2^{i}}$. To see this note that for $0 \leq x<1$ we may choose

$$
a_{i}=\left\{\begin{array}{lll}
0 & \text { if } 2^{i-1} x \in\left[0, \frac{1}{2}\right) & \bmod 1 \\
1 & \text { if } 2^{i-1} x \in\left[\frac{1}{2}, \frac{2}{2}\right) & \bmod 1
\end{array}\right.
$$

and $a_{1}=a_{2}=\cdots=1$ for $x=1$. [Candidates might already have shown this in part (i); in this case award marks in this section.] This proves that ψ is a semiconjugacy.
iv. In view of (iii) we have

$$
\operatorname{Card}\left\{1 \leq i \leq n: x_{i}=k\right\}=\sum_{i=1}^{n} \chi_{\left[\frac{k}{2}, \frac{k+1}{2}\right)}\left(2^{i-1} x\right)=\sum_{i=0}^{n-1} \chi_{\left[\frac{k}{2}, \frac{k+1}{2}\right)}\left(2^{i} x\right)
$$

where $\chi_{\left[\frac{k}{2}, \frac{k+1}{2}\right)}$ is the characteristic function of the interval $\left[\frac{k}{2}, \frac{k+1}{2}\right) \bmod 1$, which is in $L^{1}([0,1], \mu)$. By the Birkhoff ergodic theorem and ergodicity of f we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \chi_{\left[\frac{k}{2}, \frac{k+1}{2}\right)}\left(2^{i} x\right)=\int \chi_{\left[\frac{k}{2}, \frac{k+1}{2}\right)}(x) d x=\frac{1}{2} .
$$

