MOCK EXAMINATION SOLUTIONS

DYNAMICAL SYSTEMS and ERGODIC THEORY MATH 36206 (Paper Code MATH-36206)

2 hours and 30 minutes

1. (a) i. $\mathcal{O}_R(\underline{x}) = \{ (x_1 + k\alpha_1 \mod 1, x_2 + k\alpha_2 \mod 1) \mid k \in \mathbb{Z} \}.$ ii. We have

$$d(R(\underline{x}), R(\underline{y})) = \min_{\underline{m} \in \mathbb{Z}^2} |\underline{x} + \underline{\alpha} - (\underline{y} + \underline{\alpha}) + \underline{m}| = \min_{\underline{m} \in \mathbb{Z}^2} |\underline{x} - \underline{y} + \underline{m}| = d(\underline{x}, \underline{y}),$$

for all $\underline{x}, y \in \mathbb{T}^2$, and hence R is an isometry.

iii. A point <u>x</u> is periodic iff $R^k(\underline{x}) = \underline{x}$ for some $k \ge 1$. That is, we are looking for a solution of the system of two equations

 $x_1 + k\alpha_1 = x_1 \mod 1, \qquad x_2 + k\alpha_2 = x_2 \mod 1,$

which are equivalent to

$$k\alpha_1 = 0 \mod 1, \qquad k\alpha_2 = 0 \mod 1.$$

There is no solution if α_1 or α_2 are irrational, so the set of fixed points is the empty set in this case. If both α_1 and α_2 are rational, we may write $\alpha_1 = \frac{p_1}{q}$ and $\alpha_2 = \frac{p_2}{q}$ where $gcd(p_1, p_2, q) = 1$. In this case we have a solution to the above equation if k is any multiple of q. This is independent of the choice of \underline{x} and thus the set of periodic points is \mathbb{T}^2 .

- (b) i. A topological dynamical system $f: X \to X$ is called topologically mixing if for any pair U, V of non-empty open sets there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $f^n(U) \cap V \neq \emptyset$.
 - ii. R is not topologically mixing. Proof: Take $U = A \times \mathbb{T}^2$, $V = B \times \mathbb{T}^2$ where $A, B \subset \mathbb{T}^2$ are open, non-empty intervals. Then U, V are open and non-empty. Furthermore $R^n(U) \cap V = \emptyset$ if and only if $R^n_{\alpha_1}(A) \cap B = \emptyset$, where $R_{\alpha_1}(x) = x + \alpha_1$ mod 1 is a one-dimensional rotation. Since R_{α_1} is not topologically mixing, there exists two non-empty open intervals A, B such that for infinitely many n we have $R^n_{\alpha_1}(A) \cap B = \emptyset$. Hence $R^n(U) \cap V = \emptyset$ for the same infinite sequence of n. Therefore R is not topologically mixing. QED.

- (c) i. Assume first that $\alpha_1 \notin \mathbb{Q}$. Then, $x_1 + k\alpha_1 = x_1 + k'\alpha_1 \mod 1$ if and only if $(k k')\alpha_1 = 0 \mod 1$. Since $\alpha_1 \notin \mathbb{Q}$, this implies k = k'. Hence the first components of the points in the orbit are distinct, and hence the points themselves must be distinct. If $\alpha_1 \in \mathbb{Q}$, then by assumption $\alpha_2 \notin \mathbb{Q}$, and the above argument yields the same conclusion for the second components. QED.
 - ii. We apply the pigeon hole principle. Partition \mathbb{T}^2 into N^2 squares, each with sides $\frac{1}{N}$. Amongst the $N^2 + 1$ points $R^k(\underline{x})$ $(k = 0, \ldots, N^2)$ there must be at least one square that contains two points, say $R^k(\underline{x})$ and $R^\ell(\underline{x})$ with $0 \leq k < \ell \leq N^2$. Because they are in the same square, both the difference between their x and y coordinates is less than 1/N. Thus, recalling the definition of distance, $d(R^\ell(\underline{x}), R^k(\underline{x})) \leq \frac{1}{N}$. Since R is an isometry we have $d(R^{\ell-k}, \underline{x}) = d(R^\ell(\underline{x}), R^k(\underline{x})) \leq \frac{1}{N}$. Note that $1 \leq \ell k \leq N^2$. This yields the desired inequality for $n := \ell k$.
- 2. (a) i. The transformation $S: X \to X$ defined on the measure space (X, \mathscr{A}, μ) , where μ is a probability measure, is ergodic with respect to μ if for any invariant set $A \in \mathscr{A}$ (that is a set such that $S^{-1}(A) = A$) either $\mu(A) = 0$ or $\mu(A) = 1$.
 - ii. To prove that a measure-preserving transformation S preserving the probability measure μ is *ergodic* with respect to μ it is enough to show that any function $f \in L^2(X, \mu)$ that is invariant under S (that is $f \circ S = f \mu$ -almost everywhere) is constant μ -almost everywhere.
 - (b) To show that the map T for α irrational is ergodic with respect to λ , let us verify the sufficient condition for ergodicity in (a) ii. Let $f \in L^2(\mathbb{T}^2, \lambda)$. We can represent f as a 2-dimensional Fourier series, that is

$$f(x_1, x_2) = \sum_{\underline{n} = (n_1, n_2) \in \mathbb{Z}^2} c_{\underline{n}} e^{2\pi i (n_1 x_1 + n_2 x_2)},$$
(1)

where the equality holds in the L^2 sense and the Fourier coefficients are

$$c_{\underline{n}} = c_{n_1,n_2} = \int_0^1 \int_0^1 f(x_1, x_2) e^{-2\pi i (n_1 x_1 + n_2 x_2)} dx_1 dx_2$$

Evaluating the Fourier expansion at $T(x_1, x_2) = (x_1 + \alpha - k_1, x_1 + x_2 - k_2)$ (where k_1, k_2 are respectively the integer parts of $x_1 + \alpha$ and $x_1 + x_2$), since $e^{-2\pi i n_1 k_1} = e^{-2\pi i n_2 k_2} = 1$ because $k_1 n_1$ and $k_2 n_2$ are integers, we get

$$f \circ T(x_1, x_2) = \sum_{\substack{(n_1, n_2) \in \mathbb{Z}^2 \\ (n_1, n_2) \in \mathbb{Z}^2}} c_{n_1, n_2} e^{2\pi i [n_1(x_1 + \alpha) + n_2(x_1 + x_2)]}$$

$$= \sum_{\substack{(n_1, n_2) \in \mathbb{Z}^2 \\ (n_1, n_2) \in \mathbb{Z}^2}} e^{2\pi i n_1 \alpha} c_{n_1, n_2} e^{2\pi i (n_1 + n_2) x_1} e^{2\pi i n_2 x_2}.$$

$$(2)$$

By invariance of f, since $f \circ T = f$, we can equate (1) and (2):

$$\sum_{(n_1,n_2)\in\mathbb{Z}^2} c_{\underline{n}} e^{2\pi i (n_1 x_1 + n_2 x_2)} = \sum_{(n_1,n_2)\in\mathbb{Z}^2} e^{2\pi i n_1 \alpha} c_{\underline{n}} e^{2\pi i (n_1 + n_2) x_1} e^{2\pi i n_2 x_2}.$$

By uniqueness of Fourier coefficients, $c_{n_1,n_2} = e^{2\pi i n_1 \alpha} c_{n_1+n_2,n_2}$. Thus, we get by induction that $|c_{n_1,n_2}| = |c_{n_1+kn_2,n_2}|$ for any $k \in \mathbb{N}$. If $n_2 \neq 0$, the norm of (n_1+kn_2,n_2) grows as $k \to \infty$. Thus, since the value of $|c_{n_1+kn_2,n_2}|$ is independent on k but by the Riemann Lebesgue Lemma (which applies since $\lambda(\mathbb{T}^2) < +\infty$ and thus $L^2(\mathbb{T}^2, \lambda) \subset L^1(\mathbb{T}^2, \lambda)$),

this shows that it has to be zero. Thus, for k = 0 we must have $|c_{n_1,n_2}| = 0$ for any $n_2 \neq 0$. If $n_2 = 0$, we get $c_{n_1,0} = e^{2\pi i n_1 \alpha} c_{n_1,0}$ or equivalently $(1 - e^{2\pi i n_1 \alpha}) c_{n_1,0} = 0$. Since α is irrational and the orbit of an irrational rotation consist of distinct points, we have that $\{n_1\alpha\} \neq 0$ for any $n_1 \neq 0$. Thus, $e^{2\pi i n_1\alpha} \neq 1$ and $c_{n_1,0} = 0$ for any $n_1 \neq 0$. Thus, the only non-zero term in the Fourier expansion is possibly $c_{0,0}$, so f is constant. By part (a)i, we conclude that T is ergodic.

(c) i. Set $\alpha = \frac{1}{2}$. Given $(x, y) \in \mathbb{T}^2$, consider the two circles

$$C_1 = \{x\} \times \mathbb{T}, \qquad C_2 = \{x + \frac{1}{2} \mod 1\} \times \mathbb{T}.$$

To show that the orbit $\mathcal{O}_T^+(x, y)$ is contained in union of the two circles C_1, C_2 , it is enough to prove that if we write $T^n(x, y) := (x_n, y_n)$, the x coordinate x_n of the n^{th} point in the orbit is either equal to x or x + 1/2. We are given that, for any $n \in \mathbb{N}$, we have $x_n = x + n\alpha \mod 1 = x + n/2 \mod 1$ for $\alpha = 1/2$. $n/2 \mod 1$. Thus, $x_n = x$ if n is even or $x_n = x + 1/2$ if n is odd, concluding the proof.

ii. No, T is NOT ergodic with respect to λ . To see this, consider for example the set

$$A = \left[0, \frac{1}{4}\right] \times \mathbb{T} \cup \left[\frac{1}{2}, \frac{3}{4}\right] \times \mathbb{T}$$

Then A is measurable (it is union of rectangles) and invariant. Indeed, given any $(x, y) \in A$, as in part i, $T^{-1}(x, y) = (x', y')$ where x' = x or $x' = x - 1/2 \mod 1$. Thus, since if $x \in [0, 1/4] \cup [1/2, 3/4]$ also $x - 1/2 \mod 1 \in [0, 1/4] \cup [1/2, 3/4]$, A is invariant. Furthemore, since A is the union of two rectangles of area 1/4, $\lambda(A) = 1/2$. Thus T has an invariant set of non trivial measure.

iii. For $\alpha = 1/2$ and any $n \in \mathbb{N}$, by the formula for $T^n(x, y)$ which we are given, we have that

$$T^{n}(x,y) = (x + \frac{n}{2}, y + nx + \frac{n(n-1)}{4} \mod 1).$$

Remark that if n = 4k + i for $k \in \mathbb{N}$ and $0 \le i \le 3$, then

$$\frac{n(n-1)}{4} \mod 1 = \frac{(4k+i)(4k+i-1)}{4} \mod 1 = \frac{i^2-i}{4} \mod 1.$$

Thus, we have that

$$T^{4k+i}(x,y) = \begin{cases} (x,y+4kx \mod 1) & \text{if } i = 0, \\ (x+\frac{1}{2} \mod 1, y+(4k+1)x \mod 1) & \text{if } i = 1, \\ (x,y+(4k+2)x+\frac{1}{2} \mod 1) & \text{if } i = 2, \\ (x+\frac{1}{2} \mod 1, y+(4k+3)x+\frac{1}{2} \mod 1) & \text{if } i = 3. \end{cases}$$

Consider for example only points of the form $T^{4k}(x,y) \in \mathcal{O}^+(x,y)$ as $k \in \mathbb{N}$. Since the y-coordinate of $T^{4k}(x,y) = (x, y + 4kx \mod 1)$ consists of points in the orbit $\mathcal{O}^+_{R_{4x}}(y) = \{y + 4kx \mod 1, k \in \mathbb{N}\}$ of the rotation R_{4x} and x is irrational, the points $\{T^{4k}(x,y), k \in \mathbb{N}\} \in \mathcal{O}^+(x,y)$ are dense in $\{x\} \times \mathbb{T}$. Conversely, looking at points of the form $T^{4k+3}(x,y) \in \mathcal{O}^+(x,y)$ as $k \in \mathbb{N}$, we have $T^{4k}(x,y) = (x + \frac{1}{2} \mod 1, y + (4k + 3)x + \frac{1}{2} \mod 1)$. Since the points $y + (4k + 3)x + \frac{1}{2}$ belong to the orbit $\mathcal{O}^+_{R_{4kx}}(y + 3x + 1/2)$ of the rotation R_{4kx} by 4kx and x is irrational, these points are dense on the circle $\{x + \frac{1}{2}\} \times \mathbb{T}$. Thus $\mathcal{O}^+_T(x,y)$ is dense in $C_1 \cup C_2$. 3. (a) i. We say that S is an (n, ϵ) -separated set for T if for any $\underline{x}, \underline{y} \in \mathbb{T}^2$ such that $\underline{x} \neq \underline{y}$ we have that

$$d_n(\underline{x},\underline{y}) = \max_{0 \le k < n} d(T^k(\underline{x}), T^k(\underline{y})) < \epsilon.$$

ii. The topological entropy of T is given by

$$h_{top}(T) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{\log(Sep(n, \epsilon))}{n},$$

where $Sep(n, \epsilon)$ is the maximal cardinality of an (n, ϵ) -separated set.

- (b) i. The set $Per_n(\sigma)$ of periodic points of period n for σ consists of all sequences $\underline{x} \in \Sigma_N$ whose entries are repeated periodically with period n, that is $x_{i+n} = x_i$ for any $i \in \mathbb{Z}$. Since once the digits x_0, \ldots, x_{n-1} are assigned a sequence with this property is completely determined, the cardinality of $Per_n(\sigma)$ is N^n .
 - ii. To show that $Per(\sigma)$ is dense in Σ_N , we need to show that in any non-empty open set $U \subset \Sigma_N$ there is a periodic point. By definition of open sets, every nonempty open set contains a ball with respect to the distance d and, by shrinking the radius if necessary, we can assume that it contains a ball of radius $1/\rho^k$. Since $\rho > 2N - 1$, we know that any ball of this form is a cylinder $C_{-k,k}(a_{-k}, \ldots, a_k)$ for some digits $a_{-k}, \ldots, a_k \in \{0, \ldots, N - 1\}^{2k+1}$. Let $\underline{x} \in \Sigma_N$ be the sequence obtained repearing periodically the digits a_{-k}, \ldots, a_k , that is $x_{i+(2k+1)n} = a_i$ for all $n \in \mathbb{Z}$ and $|i| \leq k$. Then $\underline{x} \in \Sigma_N^+$ is periodic of period 2k + 1 and it belongs to $C_{-k,k}(a_{-k}, \ldots, a_k)$. Since we constructed a periodic point in every non-empty open set, periodic points are dense.
 - iii. Fix a positive integer n and let $0 < \epsilon < 1$ and $S = Per_n(\sigma)$. To show that S is (n, ϵ) -separated, consider any two distinct $\underline{x}, \underline{y} \in S$. Since \underline{x} and \underline{y} are periodic points of period n, we must have $x_i \neq y_i$ for some $0 \leq i < n$. Thus, since σ acts as a shift on the digits and $\sigma^i(\underline{x}), \sigma^i(y)$ start with x_i, y_i respectively, we have that

$$d_n(\underline{x}, \underline{y}) = \max_{0 \le j < n} d(\sigma^j(\underline{x}), \sigma^j(\underline{y})) \ge d(\sigma^i(\underline{x}), \sigma^i(\underline{y}))$$
$$= \sum_{k=-\infty}^{+\infty} \frac{|x_{i+k} - y_{i+k}|}{\rho^{|k|}} \ge |x_i - y_i| \ge 1 > \epsilon.$$

This shows that S is (n, ϵ) -separated.

iv. For any given $\epsilon > 0$, since $Sep(n, \epsilon)$ is the maximal cardinality of an (n, ϵ) separated set and by Part iii $Per_n(\sigma)$ is (n, ϵ) -separated,

$$Sep(n, \epsilon) \ge Card(Per_n(\sigma)) = N^n,$$

where the last equality follows by Part i. Thus, using the definition of topological entropy recalled in Part (a)ii,

$$h_{top}(\sigma, \epsilon) = \limsup_{n \to \infty} \frac{\log(Sep(n, \epsilon))}{n} \ge \limsup_{n \to \infty} \frac{n \log N}{n} = \log N.$$

Since this quantity is independent on ϵ , $h_{top}(\sigma) = \lim_{\epsilon \to 0} h_{top}(\sigma, \epsilon) \ge \log N$.

(c) Let $\underline{a} = (a_i)_{i \in \mathbb{N}}$ be an enumeration all possible sequences with 2k + 1 digits in $\{0, 1, \ldots, N-1\}$ as k grows. Define \underline{x} such that $x_{-i} = a_i$ for any $i \in \mathbb{N}$ and $x_i \neq x_0 = a_0$ for any i > 1. Let us first show that the full orbit $\mathcal{O}_{\sigma}(\underline{x})$ is dense. As argued before, it is enough to show that it visits any cylinder, say $C_{-k,k}(b_{-k}, \ldots, b_k)$. Since the

string b_k, \ldots, b_{-k} appears by construction in \underline{a} , say $a_{n+i} = b_i$ for $|i| \leq k$ and hence $x_{-n+i} = b_{-i}$ for $|i| \leq k$, we have that $\sigma^{-n}(\underline{x}) \in C_{-k,k}(b_{-k}, \ldots, b_k)$ as desired. To see that the forward orbit $\mathcal{O}_{\sigma}(\underline{x})$ is not recurrent, it is enough to remark that since $x_n \neq x_0$ for any n > 1,

$$d(\sigma^n(\underline{x},\underline{x})) \ge \frac{|x_n - x_0|}{2^0} \ge 1,$$

thus there cannot be any increasing sequence $(n_k)_{k\in\mathbb{N}}$ so that $d(\sigma^{n_k}(\underline{x}), \underline{x}) \to 0$.

4. (a) i. A conjugacy $\psi : Y \to X$ between f and g is an *invertible* map ψ (injective and surjective) such that $\psi \circ g = f \circ \psi$ (this can also be written as $\psi g = f\psi$), i.e. for all $y \in Y$ we have $\psi(g(y)) = f(\psi(y))$, or, equivalently, such that the diagram below commutes:

$$\begin{array}{ccc} Y & \stackrel{g}{\longrightarrow} & Y \\ \downarrow \psi & & \downarrow \psi \\ X & \stackrel{f}{\longrightarrow} & X \end{array}$$

- ii. A semi-conjugacy $\psi: Y \to X$ between f and g is a surjective map ψ such that $\psi g = f\psi$, i.e. for all $y \in Y$ we have $\psi(g(y)) = f(\psi(y))$.
- (b) i. Many possible answers; here is simplest: Let X = {0}, Y = {0,1}, f the identity map and g the permutation of 0 and 1. f and g cannot be conjugate since there is no invertible map Y → X. The map ψ : Y → X, defined by ψ(y) = 0 for all y ∈ Y, is surjective and defines a semi-conjucacy because: ψ(g(y)) = 0 for all y ∈ Y and f(ψ(y)) = f(0) = 0 for all y ∈ Y.
 - ii. Let $X = \{0\}$ and f the identity. The map $\psi : Y \to X$ defined by $\psi(y) = 0$ is surjective and we have $\psi(g(y)) = 0$ and $f(\psi(y)) = f(0) = 0$.
- (c) i. The point $x = \sum_{i=1}^{\infty} \frac{x_i}{2^i}$ is called normal in base two if for every $k \in Y$ we have $\lim_{n\to\infty} \frac{1}{n}Card\{1 \le i \le n : x_i = k\} = \frac{1}{2}$. OR: x is called normal in base two if the frequency of the occurance of each digit exists and is equal to $\frac{1}{2}$.
 - ii. Denote by μ the Lebesgue measure on X. Then for every $h \in L^1(X, \mu)$ the limit $\overline{h}(x) = \frac{1}{n} \lim_{n \to \infty} \sum_{k=0}^{n-1} h(f^k(x))$ exists for μ -almost every $x \in X$ and satisfies $\overline{h} \circ f = \overline{h}$ for μ -almost every $x \in X$. Furthermore $\int_X \overline{h} d\mu = \int_X h d\mu$.
 - iii. Define f by $f(x) = 2x \mod 1$. Define the map $\psi : Y \to X$ by $\psi((a_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} \frac{a_i}{2^i}$, and note that $\psi(g((a_i)_{i=1}^{\infty})) = \psi((a_i)_{2=1}^{\infty}) = \sum_{i=2}^{\infty} \frac{a_i}{2^i} \mod 1$ and

$$f(\psi((a_i)_{i=1}^{\infty})) = f(\sum_{i=1}^{\infty} \frac{a_i}{2^i}) = 2\sum_{i=1}^{\infty} \frac{a_i}{2^i} = \sum_{i=1}^{\infty} \frac{a_i}{2^{i-1}} = \sum_{i=2}^{\infty} \frac{a_i}{2^i} \mod 1.$$

Therefore $\psi \circ g = f \circ \psi$. Furthermore ψ is surjective since for every $x \in [0, 1]$ we find a_i such that $x = \sum_{i=1}^{\infty} \frac{a_i}{2^i}$. To see this note that for $0 \le x < 1$ we may choose

$$a_i = \begin{cases} 0 & \text{if } 2^{i-1}x \in [0, \frac{1}{2}) \mod 1\\ 1 & \text{if } 2^{i-1}x \in [\frac{1}{2}, \frac{2}{2}) \mod 1 \end{cases}$$

and $a_1 = a_2 = \cdots = 1$ for x = 1. [Candidates might already have shown this in part (i); in this case award marks in this section.] This proves that ψ is a semiconjugacy.

iv. In view of (iii) we have

$$Card\{1 \le i \le n : x_i = k\} = \sum_{i=1}^n \chi_{[\frac{k}{2}, \frac{k+1}{2})}(2^{i-1}x) = \sum_{i=0}^{n-1} \chi_{[\frac{k}{2}, \frac{k+1}{2})}(2^ix)$$

where $\chi_{[\frac{k}{2},\frac{k+1}{2})}$ is the characteristic function of the interval $[\frac{k}{2},\frac{k+1}{2}) \mod 1$, which is in $L^1([0,1],\mu)$. By the Birkhoff ergodic theorem and ergodicity of f we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \chi_{\left[\frac{k}{2}, \frac{k+1}{2}\right]}(2^{i}x) = \int \chi_{\left[\frac{k}{2}, \frac{k+1}{2}\right]}(x) dx = \frac{1}{2}$$