Functional Analysis Exercise sheet 1 — Solutions

1. We use that

$$\sum_{n=1}^{N} |x_n + y_n|^p \le \sum_{n=1}^{N} (2 \max(|x_n|, |y_n|))^p \le 2^p \sum_{n=1}^{N} (|x_n|^p + |y_n|^p).$$

Hence, if $x = (x_n)_{n \in \mathbb{N}}$ and $y = (y_n)_{n \in \mathbb{N}}$ are in ℓ^p , then also

$$\sum_{n=1}^{\infty} |x_n + y_n|^p < \infty.$$

This proves that ℓ^p is closed under addition.

Also for $\alpha \in \mathbb{F}$,

$$\sum_{n=1}^{\infty} |\alpha x_n|^p = |\alpha|^p \sum_{n=1}^{\infty} |x_n|^p.$$

Hence, if $x \in \ell^p$, then $\alpha x \in \ell^p$ too.

- 2. The property $x \in \ell^p$ is equivalent to $\sum_{n=1}^{\infty} \frac{1}{n^{p/2}} < \infty$. This series converges if and only if p > 2.
- 3. We have

$$\begin{aligned} &\|x+y\|^2 = \langle x,x\rangle + 2\mathrm{Re}\,\langle x,y\rangle + \langle y,y\rangle\,,\\ &\|x-y\|^2 = \langle x,x\rangle - 2\mathrm{Re}\,\langle x,y\rangle + \langle y,y\rangle\,,\\ &\|x+iy\|^2 = \langle x,x\rangle + 2\mathrm{Re}\,\langle x,iy\rangle + \langle iy,iy\rangle = \langle x,x\rangle + 2\mathrm{Im}\,\langle x,y\rangle - \langle y,y\rangle\,,\\ &\|x-iy\|^2 = \langle x,x\rangle - 2\mathrm{Re}\,\langle x,iy\rangle + \langle iy,iy\rangle = \langle x,x\rangle - 2\mathrm{Im}\,\langle x,y\rangle - \langle y,y\rangle\,. \end{aligned}$$

Adding these equalities, we deduce the formula.

4. We have

$$||x + y||^2 = \langle x, x \rangle + 2\operatorname{Re}\langle x, y \rangle + \langle y, y \rangle,$$

$$||x - y||^2 = \langle x, x \rangle - 2\operatorname{Re}\langle x, y \rangle + \langle y, y \rangle.$$

Adding these equalities, we deduce the formula. The equality says that the sum of the squares of sides of a parallelogram is equal to the sum of the squares of diagonals.

5.
$$||x+y||^2 = \langle x, x \rangle + 2 \operatorname{Re} \langle x, y \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2$$
.

6. We have

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| \le |\langle x_n, y_n \rangle - \langle x, y_n \rangle| + |\langle x, y_n \rangle - \langle x, y \rangle|$$

$$= |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle|$$

$$\le ||x_n - x|| ||y_n|| + ||x|| ||y_n - y||$$

Since $y_n \to y$, $||y_n|| \le ||y_n - y|| + ||y|| \le 1 + ||y||$ for all sufficiently large n. Hence, for all sufficiently large n,

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| \le ||x_n - x||(1 + ||y||) + ||x|| ||y_n - y|| \to 0.$$

This proves the claim.

7. Consider the function $\phi(t)=tb-\frac{t^p}{p}$ on $[0,\infty]$. Since $\phi'(t)=b-t^{p-1}$, we have $\phi'>0$ for $t< b^{1/(p-1)}$, and $\phi'<0$ for $t> b^{1/(p-1)}$. Hence, ϕ achieves its maximal value at $t=b^{1/(p-1)}$. This maximal value is

$$\phi(b^{1/(p-1)}) = b^{1+1/(p-1)} - \frac{b^{p/(p-1)}}{p} = (1 - \frac{1}{p})b^{p/(p-1)} = \frac{b^q}{q}.$$

This implies the Young inequality.