Functional Analysis Exercise sheet 2

- 1. Show that ℓ^{∞} is a Banach space with respect to the norm $\|\cdot\|_{\infty}$.
- 2. Let $x^{(n)} = (x_1^{(n)}, x_2^{(n)}, x_3^{(n)}, \ldots) \in \mathbb{R}^{\mathbb{N}}$ be the sequence where for $k \leq n$ we have that $x_k^{(n)} = \frac{1}{\sqrt{k}}$ and for k > n we have that $x_n^{(k)} = 0$. For what values of p, is $\{x_n\}_{n \in \mathbb{N}}$ a Cauchy sequence in ℓ^p ?
- 3. Is the sequence of functions $f_n(x) = x^n$ Cauchy in C([0, 1]) equipped with max-norm? Is it Cauchy in C([0, 1]) equipped the norm $||f||_2 = \sqrt{\int_0^1 |f(x)|^2 dx}$?
- 4. Let p < q and consider ℓ^p as a subspace of ℓ^q . Is ℓ^p a closed subspace with respect to the norm $\|\cdot\|_q$? What is its closure?
- 5. Let C([0,1]) be the space of all real valued continuous functions f: $[0,1] \to \mathbb{R}$. Take the norm $||f|| = \left(\int_0^1 |f(x)|^2 dx\right)^{1/2}$ and the subspace $C = \{f \in C([0,1]) : f(0) = 0\}.$

By considering the functions $f_n \in C$ defined by $f_n(x) = 1$ if $x \ge \frac{1}{n}$ and $f_n(x) = nx$ if $x \le \frac{1}{n}$ show that C is not a closed subspace. Can you find the closure of C?

6. Let

$$c = \{ x \in \ell^{\infty} : \lim_{n \to \infty} x_n \text{ exists } \}.$$

Show that c is a closed subspace of ℓ^{∞} and is thus also a Banach space with respect to the norm $\|\cdot\|_{\infty}$.