
Functional Analysis Exercise sheet 2 — solutions

1. We need to show that every Cauchy sequence x(n) = (x
(n)
k )k≥1 in `∞

converges. We know that for every ε > 0, there exists N ∈ N such
that ‖x(n) − x(m)‖∞ < ε for all n,m ≥ N . Then also for every k ≥ 1,

|x(n)k − x(m)
k | ≤ ‖x

(n) − x(m)‖∞ < ε.

Hence, the sequence (x
(n)
k )n≥1 is Cauchy in C, and it follows that

x
(n)
k → xk as n→∞.

Let x = (xk)k≥1. We first show that x ∈ `∞. We have

|xk| ≤ |xk − x
(n)
k |+ |x

(n)
k − x(m)

k |+ |x
(m)
k |

≤ |xk − x
(n)
k |+ ‖x

(n) − x(m)‖∞ + ‖x(m)‖∞
< |xk − x

(n)
k |+ ε+ ‖x(m)‖∞

for n,m ≥ N . Taking n→∞, we deduce that

|xk| ≤ ε+ ‖x(m)‖∞,

so that x = (xk)k≥1 is bounded.

Finally, we claim that x(n) → x in `∞. Indeed,

|x(n)k − xk| ≤ |x
(n)
k − x(m)

k |+ |x
(m)
k − xk|

≤ ‖x(n) − x(m)‖∞ + |x(m)
k − xk|

< ε+ |x(m)
k − xk|

for n,m ≥ N . Taking m→∞, we deduce that

|x(n)k − xk| ≤ ε

for all k ≥ 1 and n ≥ N . This shows that ‖x(n) − x‖∞ → 0.

We have proved that every Cauchy sequence converges. Hence, `∞ is
complete.

2. We claim that x(n) is Cauchy if and only if p > 2.

Suppose that 2 < p <∞, Then for n < m,

‖x(m) − x(n)‖pp =

m∑
k=n+1

1

(
√
k)p
≤

∞∑
k=n+1

1

kp/2
.
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Since p > 2, the series
∑∞

k=1
1

kp/2
converges, and

∑∞
k=n+1

1
kp/2
→ 0 as

n→∞. Hence, for every ε > 0 and n ≥ N(ε),

‖x(m) − x(n)‖pp ≤
∞∑

k=n+1

1

kp/2
< ε.

This implies that the sequence is Cauchy. The proof for p = ∞ is
similar. In this case, we have the estimate

‖x(m) − x(n)‖∞ = sup
n+1≤k≤m

1

(
√
k)p
≤ 1

(n+ 1)p/2
→ 0.

Conversely, suppose that x(n) is Cauchy, but p ≤ 2. Then for every
ε > 0 and m > n ≥ N(ε),

‖x(m) − x(n)‖pp ≤
m∑

k=n+1

1

kp/2
< εp.

This implies that the sum
∑m

k=n+1
1

kp/2
is uniformly bounded, but since

p ≤ 2, we have
∑∞

k=n+1
1

kp/2
=∞. This is a contradiction.

3. We claim that (fn)n≥1 is not Cauchy in C([0, 1]) equipped with max-
norm. Indeed, suppose that (fn)n≥1 is Cauchy. Then by completeness,

‖fn − f‖∞ = max{|fn(x)− f(x)| : x ∈ [0, 1]} → 0

for some f ∈ C([0, 1]). In particular, fn(x)→ f(x) for all x. However,
xn → 0 for x < 1 and xn = 1 for x = 1. This contradicts continuity of
f .

We claim that (fn)n≥1 is Cauchy in C([0, 1]) equipped with L2-norm.
We have

‖fn − fm‖2 ≤ ‖fn‖2 + ‖fm‖2 =

√∫ 1

0
x2ndx+

√∫ 1

0
x2mdx

=
1√

2n+ 1
+

1√
2m+ 1

.

Then if n,m > ((2/ε)2 − 1)/2, then 1√
2n+1

, 1√
2m+1

< ε/2, and ‖fn −
fm‖2 < ε. Hence, (fn)n≥1 is Cauchy.

4. Let p < q and consider `p as a subspace of `q. Is `p a closed subspace
with respect to the norm ‖·‖q? What is its closure?

We claim that the closure of `p in `q is `q if q <∞. In particular, since
we know that `p 6= `q, `p is not a closed subspace.
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Take any x = (xk)k≥1 ∈ `q and consider a sequence x(n) = (x
(n)
k )k≥1

such that x
(n)
k = xk for k ≥ n and x

(n)
k = 0 for k > n. Then clearly

‖x(n)‖p <∞. Also,

‖x(n) − x‖q =

( ∞∑
k=n+1

|xk|q
)1/q

.

Since x ∈ `q, we have
∑∞

k=1 |xk|q <∞ and
∑∞

k=n+1 |xk|q → 0. Hence,

‖x(n) − x‖q → 0.

We claim that the closure of `p in `∞ consists of sequences x = (xk)k≥1
such that xk → 0. In particular, this closure is strictly larger than `p.

Take any x = (xk)k≥1 in `∞ such that x(n) = (x
(n)
k )k≥1 ∈ `p converges

to x in `∞. Then

|xk| ≤ |xk − x
(n)
k |+ |x

(n)
k | ≤ ‖x− x

(n)‖∞ + |x(n)k |.

For every ε > 0 and n ≥ N(ε), ‖x− x(n)‖∞ < ε/2. Furthermore, since∑
k≥1 |x

(n)
k |

p < ∞, we have |x(n)k | → 0 as k → ∞, so that |x(n)k | < ε/2
for all k ≥ N(n, ε). Hence, |xk| < ε for all sufficiently large k. This
shows that xk → 0.

Now take any x = (xk)k≥1 in `∞ such that xk → 0. We consider a

sequence x(n) = (x
(n)
k )k≥1 such that x

(n)
k = xk for k ≥ n and x

(n)
k = 0

for k > n. Then clearly ‖x(n)‖p <∞. Also,

‖x(n) − x‖∞ = sup
k≥n+1

|xk| → 0,

as n→∞, so that x belongs to the closure of `p.

5. We claim that fn → 1. Indeed,

‖fn − 1‖22 =

∫ 1/n

0
|nx|2 dx ≤

∫ 1/n

0
1 dx = 1/n→ 0

This proves that C is not closed.

We claim that C is dense in C([0, 1]). Take any function f ∈ C([0, 1])
and consider a sequence of continuous functions fn such that fn(x) =
f(x) for x ≥ 1/n and fn(x) = nf(1/n)x for x < 1/n. Then

‖fn − f‖22 =

∫ 1/n

0
|fn(x)− f(x)|2 dx ≤ 4‖f‖∞/n→ 0.

This proves that f is in the closure of C.
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6. If (xk)k≥1 and (yk)k≥1 are convergent, then (xk +yk)k≥1 and (αxk)k≥1
also convergent. Hence, c is a subspace.

Now we show that c is closed. Take any sequence x(n) = (x
(n)
k )k≥1 ∈ c

such that x(n) → x for some x = (xk)k≥1 ∈ `∞. We have

|xk − xl| ≤ |xk − x
(n)
k |+ |x

(n)
k − x(n)l |+ |x

(n)
l − xl|

≤ ‖x− x(n)‖∞ + |x(n)k − x(n)l |+ ‖x
(n) − x‖∞.

For every ε > 0 and n ≥ N(ε), ‖x(n)−x‖∞ < ε/3. Moreover, we know

that x(n) = (x
(n)
k )k≥1 ∈ c, so that the sequence (x

(n)
k )k≥1 is Cauchy.

This mean that for every k, l ≥ N(n, ε), |x(n)k − x(n)l | < ε/3. Hence,
we deduce that for all sufficiently large k and l, |xk − xl| < ε. This
proves that the sequence x is Cauchy, and in particular it converges
and belongs to c.

It remains to show that c is a Banach space. Given a Cauchy sequence
x(n) ∈ c, by completeness of `∞, we know that x(n) → x for some
x ∈ `∞. Since c is closed, x ∈ c. Hence, c is complete.
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