Functional Analysis Exercise sheet 2 — solutions

1. We need to show that every Cauchy sequence $x^{(n)} = (x_k^{(n)})_{k \ge 1}$ in ℓ^{∞} converges. We know that for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\|x^{(n)} - x^{(m)}\|_{\infty} < \epsilon$ for all $n, m \ge N$. Then also for every $k \ge 1$,

$$|x_k^{(n)} - x_k^{(m)}| \le ||x^{(n)} - x^{(m)}||_{\infty} < \epsilon.$$

Hence, the sequence $(x_k^{(n)})_{n\geq 1}$ is Cauchy in \mathbb{C} , and it follows that $x_k^{(n)} \to x_k$ as $n \to \infty$.

Let $x = (x_k)_{k \ge 1}$. We first show that $x \in \ell^{\infty}$. We have

$$\begin{aligned} |x_k| &\leq |x_k - x_k^{(n)}| + |x_k^{(n)} - x_k^{(m)}| + |x_k^{(m)}| \\ &\leq |x_k - x_k^{(n)}| + \|x^{(n)} - x^{(m)}\|_{\infty} + \|x^{(m)}\|_{\infty} \\ &< |x_k - x_k^{(n)}| + \epsilon + \|x^{(m)}\|_{\infty} \end{aligned}$$

for $n, m \geq N$. Taking $n \to \infty$, we deduce that

$$|x_k| \le \epsilon + \|x^{(m)}\|_{\infty},$$

so that $x = (x_k)_{k \ge 1}$ is bounded.

Finally, we claim that $x^{(n)} \to x$ in ℓ^{∞} . Indeed,

$$\begin{aligned} |x_k^{(n)} - x_k| &\leq |x_k^{(n)} - x_k^{(m)}| + |x_k^{(m)} - x_k| \\ &\leq ||x^{(n)} - x^{(m)}||_{\infty} + |x_k^{(m)} - x_k| \\ &< \epsilon + |x_k^{(m)} - x_k| \end{aligned}$$

for $n, m \geq N$. Taking $m \to \infty$, we deduce that

$$|x_k^{(n)} - x_k| \le \epsilon$$

for all $k \ge 1$ and $n \ge N$. This shows that $||x^{(n)} - x||_{\infty} \to 0$.

We have proved that every Cauchy sequence converges. Hence, ℓ^∞ is complete.

2. We claim that $x^{(n)}$ is Cauchy if and only if p > 2.

Suppose that 2 , Then for <math>n < m,

$$||x^{(m)} - x^{(n)}||_p^p = \sum_{k=n+1}^m \frac{1}{(\sqrt{k})^p} \le \sum_{k=n+1}^\infty \frac{1}{k^{p/2}}.$$

Since p > 2, the series $\sum_{k=1}^{\infty} \frac{1}{k^{p/2}}$ converges, and $\sum_{k=n+1}^{\infty} \frac{1}{k^{p/2}} \to 0$ as $n \to \infty$. Hence, for every $\epsilon > 0$ and $n \ge N(\epsilon)$,

$$||x^{(m)} - x^{(n)}||_p^p \le \sum_{k=n+1}^{\infty} \frac{1}{k^{p/2}} < \epsilon.$$

This implies that the sequence is Cauchy. The proof for $p = \infty$ is similar. In this case, we have the estimate

$$||x^{(m)} - x^{(n)}||_{\infty} = \sup_{n+1 \le k \le m} \frac{1}{(\sqrt{k})^p} \le \frac{1}{(n+1)^{p/2}} \to 0.$$

Conversely, suppose that $x^{(n)}$ is Cauchy, but $p \leq 2$. Then for every $\epsilon > 0$ and $m > n \geq N(\epsilon)$,

$$||x^{(m)} - x^{(n)}||_p^p \le \sum_{k=n+1}^m \frac{1}{k^{p/2}} < \epsilon^p.$$

This implies that the sum $\sum_{k=n+1}^{m} \frac{1}{k^{p/2}}$ is uniformly bounded, but since $p \leq 2$, we have $\sum_{k=n+1}^{\infty} \frac{1}{k^{p/2}} = \infty$. This is a contradiction.

3. We claim that $(f_n)_{n\geq 1}$ is not Cauchy in C([0, 1]) equipped with maxnorm. Indeed, suppose that $(f_n)_{n\geq 1}$ is Cauchy. Then by completeness,

$$||f_n - f||_{\infty} = \max\{|f_n(x) - f(x)| : x \in [0, 1]\} \to 0$$

for some $f \in C([0, 1])$. In particular, $f_n(x) \to f(x)$ for all x. However, $x^n \to 0$ for x < 1 and $x^n = 1$ for x = 1. This contradicts continuity of f.

We claim that $(f_n)_{n\geq 1}$ is Cauchy in C([0,1]) equipped with L^2 -norm. We have

$$\|f_n - f_m\|_2 \le \|f_n\|_2 + \|f_m\|_2 = \sqrt{\int_0^1 x^{2n} dx} + \sqrt{\int_0^1 x^{2m} dx}$$
$$= \frac{1}{\sqrt{2n+1}} + \frac{1}{\sqrt{2m+1}}.$$

Then if $n, m > ((2/\epsilon)^2 - 1)/2$, then $\frac{1}{\sqrt{2n+1}}, \frac{1}{\sqrt{2m+1}} < \epsilon/2$, and $||f_n - f_m||_2 < \epsilon$. Hence, $(f_n)_{n \ge 1}$ is Cauchy.

4. Let p < q and consider ℓ^p as a subspace of ℓ^q . Is ℓ^p a closed subspace with respect to the norm $\|\cdot\|_q$? What is its closure?

We claim that the closure of ℓ^p in ℓ^q is ℓ^q if $q < \infty$. In particular, since we know that $\ell^p \neq \ell^q$, ℓ^p is not a closed subspace.

Take any $x = (x_k)_{k \ge 1} \in \ell^q$ and consider a sequence $x^{(n)} = (x_k^{(n)})_{k \ge 1}$ such that $x_k^{(n)} = x_k$ for $k \ge n$ and $x_k^{(n)} = 0$ for k > n. Then clearly $\|x^{(n)}\|_p < \infty$. Also,

$$||x^{(n)} - x||_q = \left(\sum_{k=n+1}^{\infty} |x_k|^q\right)^{1/q}$$

Since $x \in \ell^q$, we have $\sum_{k=1}^{\infty} |x_k|^q < \infty$ and $\sum_{k=n+1}^{\infty} |x_k|^q \to 0$. Hence, $||x^{(n)} - x||_q \to 0$.

We claim that the closure of ℓ^p in ℓ^∞ consists of sequences $x = (x_k)_{k\geq 1}$ such that $x_k \to 0$. In particular, this closure is strictly larger than ℓ^p . Take any $x = (x_k)_{k\geq 1}$ in ℓ^∞ such that $x^{(n)} = (x_k^{(n)})_{k\geq 1} \in \ell^p$ converges to x in ℓ^∞ . Then

$$|x_k| \le |x_k - x_k^{(n)}| + |x_k^{(n)}| \le ||x - x^{(n)}||_{\infty} + |x_k^{(n)}|.$$

For every $\epsilon > 0$ and $n \ge N(\epsilon)$, $||x - x^{(n)}||_{\infty} < \epsilon/2$. Furthermore, since $\sum_{k\ge 1} |x_k^{(n)}|^p < \infty$, we have $|x_k^{(n)}| \to 0$ as $k \to \infty$, so that $|x_k^{(n)}| < \epsilon/2$ for all $k \ge N(n, \epsilon)$. Hence, $|x_k| < \epsilon$ for all sufficiently large k. This shows that $x_k \to 0$.

Now take any $x = (x_k)_{k \ge 1}$ in ℓ^{∞} such that $x_k \to 0$. We consider a sequence $x^{(n)} = (x_k^{(n)})_{k \ge 1}$ such that $x_k^{(n)} = x_k$ for $k \ge n$ and $x_k^{(n)} = 0$ for k > n. Then clearly $||x^{(n)}||_p < \infty$. Also,

$$||x^{(n)} - x||_{\infty} = \sup_{k \ge n+1} |x_k| \to 0,$$

as $n \to \infty$, so that x belongs to the closure of ℓ^p .

5. We claim that $f_n \to 1$. Indeed,

$$||f_n - 1||_2^2 = \int_0^{1/n} |nx|^2 \, dx \le \int_0^{1/n} 1 \, dx = 1/n \to 0$$

This proves that C is not closed.

We claim that C is dense in C([0, 1]). Take any function $f \in C([0, 1])$ and consider a sequence of continuous functions f_n such that $f_n(x) = f(x)$ for $x \ge 1/n$ and $f_n(x) = nf(1/n)x$ for x < 1/n. Then

$$||f_n - f||_2^2 = \int_0^{1/n} |f_n(x) - f(x)|^2 \, dx \le 4 ||f||_{\infty}/n \to 0.$$

This proves that f is in the closure of C.

6. If $(x_k)_{k\geq 1}$ and $(y_k)_{k\geq 1}$ are convergent, then $(x_k + y_k)_{k\geq 1}$ and $(\alpha x_k)_{k\geq 1}$ also convergent. Hence, c is a subspace.

Now we show that c is closed. Take any sequence $x^{(n)} = (x_k^{(n)})_{k \ge 1} \in c$ such that $x^{(n)} \to x$ for some $x = (x_k)_{k \ge 1} \in \ell^{\infty}$. We have

$$|x_k - x_l| \le |x_k - x_k^{(n)}| + |x_k^{(n)} - x_l^{(n)}| + |x_l^{(n)} - x_l|$$

$$\le ||x - x^{(n)}||_{\infty} + |x_k^{(n)} - x_l^{(n)}| + ||x^{(n)} - x||_{\infty}$$

For every $\epsilon > 0$ and $n \ge N(\epsilon)$, $||x^{(n)} - x||_{\infty} < \epsilon/3$. Moreover, we know that $x^{(n)} = (x_k^{(n)})_{k\ge 1} \in c$, so that the sequence $(x_k^{(n)})_{k\ge 1}$ is Cauchy. This mean that for every $k, l \ge N(n, \epsilon)$, $|x_k^{(n)} - x_l^{(n)}| < \epsilon/3$. Hence, we deduce that for all sufficiently large k and l, $|x_k - x_l| < \epsilon$. This proves that the sequence x is Cauchy, and in particular it converges and belongs to c.

It remains to show that c is a Banach space. Given a Cauchy sequence $x^{(n)} \in c$, by completeness of ℓ^{∞} , we know that $x^{(n)} \to x$ for some $x \in \ell^{\infty}$. Since c is closed, $x \in c$. Hence, c is complete.