
Functional Analysis Exercise sheet 3

1. Let C = {(a, 0, . . .) : a ∈ [0, 1]} and x = (0, 2, 0, . . .). Then for any
y ∈ C, ‖y − x‖∞ = 2.

2. Since the sequence yn = 1 − 1/n is bounded, we know that f defines
a bounded linear functional on `1. Since f is linear, f(αx + βy) =
αf(x)+βf(y). So that if x, y ∈ C and α+β = 1, then f(αx+βy) = 1.
Hence, C is convex. Since f is continuous, C = f−1({1}) is closed.

Given any x ∈ `1, |f(x)| ≤
∑

n≥1 |xn| = ‖x‖1. In particular, if x ∈ C,
then ‖x‖1 ≥ 1. This implies that the distance from 0 to C is at least

1. On the other hand, we consider y(k) ∈ C, k ≥ 2 such that y
(k)
k =

(1 − 1/k)−1 and y
(k)
i = 0 for i 6= k. Then ‖y(k)‖1 = (1 − 1/k)−1 → 1

as k → ∞. Hence, if z ∈ C is such that ‖z‖1 = inf{‖x‖1 : x ∈ C},
then ‖z‖1 = 1. However,

1 = |f(z)| ≤
∑
n≥1

(1− 1/n)|zn| ≤
∑
n≥1
|zn| = ‖z‖1,

where the above inequality becomes equality only if (1−1/n)|zn| = |zn|
for all n. Then it follows that z = 0 which is a contradiction.

3. Suppose that A is linearly dependent. Then there exists {v1, . . . , vn} ⊂
A and (α1, . . . , αn) 6= (0, . . . , 0) such that

∑n
i=1 αivi = 0. We obtain

0 =

〈
n∑
i=1

αivi, vj

〉
=

n∑
i=1

αi 〈vi, vj〉 = αj

Hence, all αj = 0 which is a contradiction.

4. We argue by induction on n. Suppose that e1, . . . , en are orthonormal
and span(e1, . . . , en) = span(x1, . . . , xn). (Clearly, this holds when
n = 1.) Then because x1, . . . , xn+1 are linearly independent, xn+1 /∈
span(e1, . . . , en), and it follows that fn 6= 0. Hence, en+1 is well-defined
and has norm one. Moreover, for i ≤ n,

〈fn+1, ei〉 = 〈xn+1, ei〉 −
n∑
k=1

〈xn+1, ek〉 〈ek, ei〉 = 0,

so that fn+1 ⊥ ei and en+1 ⊥ ei for i ≤ n. This proves that e1, . . . , en+1

are orthonormal. Also, since fn = xn −
∑n−1

k=1〈xn, ek〉ek,

span(e1, . . . , en+1) = span(x1, . . . xn, fn+1) = span(x1, . . . , xn+1),

as required.
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5. Let (en)n≥1 and (fn)n≥1 be complete orthonormal sequences for H and
K respectively. We define the map U : H → K by

U(x) =
∞∑
n=1

〈x, en〉 fn.

Since (en)n≥1 is complete,
∑∞

n=1 | 〈x, en〉 |2 = ‖x‖2 < ∞, so that the
series converges, and U is well defined. Linearity of U follows from
linearity of the inner product. For x, y ∈ H

〈U(x), U(y)〉 =

〈 ∞∑
n=1

〈x, en〉 fn,
∞∑
m=1

〈x, em〉 fm

〉

=
∞∑
n=1

∞∑
m=1

〈x, en〉 〈x, em〉 〈fn, fm〉

=
∞∑
n=1

∞∑
m=1

〈x, en〉 〈x, em〉 〈en, em〉

=

〈 ∞∑
n=1

〈x, en〉 en,
∞∑
m=1

〈x, em〉 em

〉
= 〈x, y〉 .

In particular, ‖U(x)‖ = ‖x‖, so that if U(x) = 0, then x = 0. This
shows that U is injective. To prove surjectivity, let us take z ∈ K,
then z =

∑∞
n=1 〈x, fn〉 fn and sum∞n=1| 〈x, fn〉 |2 < ∞. Hence, the

series x =
∑∞

n=1 〈x, fn〉 en converges, and U(x) = z.

6. Let f(x) = x, x ∈ [−π, π]. We use that en(x) = 1√
2π
einx, n ∈ Z, is a

complete orthonormal set of L2([−π, π]). Hence,

‖f‖22 =
∑
n∈Z
| 〈f, en〉 |2.

Direct computations show that

‖f‖2 =

∫ π

−π
x2 dx = 2π3/3,

〈f, e0〉 =

∫ π

−π
x dx = 0,

and

| 〈f, en〉 | =
1√
2π

∫ π

−π
xe−inx dx =

√
2π

|n|
.

The above formula implies that
∑∞

n=1
1
n2 = π2

6 .
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