Functional Analysis Exercise sheet 3

1. Let $C=\{(a, 0, \ldots): a \in[0,1]\}$ and $x=(0,2,0, \ldots)$. Then for any $y \in C,\|y-x\|_{\infty}=2$.
2. Since the sequence $y_{n}=1-1 / n$ is bounded, we know that f defines a bounded linear functional on ℓ^{1}. Since f is linear, $f(\alpha x+\beta y)=$ $\alpha f(x)+\beta f(y)$. So that if $x, y \in C$ and $\alpha+\beta=1$, then $f(\alpha x+\beta y)=1$. Hence, C is convex. Since f is continuous, $C=f^{-1}(\{1\})$ is closed.
Given any $x \in \ell^{1},|f(x)| \leq \sum_{n \geq 1}\left|x_{n}\right|=\|x\|_{1}$. In particular, if $x \in C$, then $\|x\|_{1} \geq 1$. This implies that the distance from 0 to C is at least 1. On the other hand, we consider $y^{(k)} \in C, k \geq 2$ such that $y_{k}^{(k)}=$ $(1-1 / k)^{-1}$ and $y_{i}^{(k)}=0$ for $i \neq k$. Then $\left\|y^{(k)}\right\|_{1}=(1-1 / k)^{-1} \rightarrow 1$ as $k \rightarrow \infty$. Hence, if $z \in C$ is such that $\|z\|_{1}=\inf \left\{\|x\|_{1}: x \in C\right\}$, then $\|z\|_{1}=1$. However,

$$
1=|f(z)| \leq \sum_{n \geq 1}(1-1 / n)\left|z_{n}\right| \leq \sum_{n \geq 1}\left|z_{n}\right|=\|z\|_{1}
$$

where the above inequality becomes equality only if $(1-1 / n)\left|z_{n}\right|=\left|z_{n}\right|$ for all n. Then it follows that $z=0$ which is a contradiction.
3. Suppose that A is linearly dependent. Then there exists $\left\{v_{1}, \ldots, v_{n}\right\} \subset$ A and $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq(0, \ldots, 0)$ such that $\sum_{i=1}^{n} \alpha_{i} v_{i}=0$. We obtain

$$
0=\left\langle\sum_{i=1}^{n} \alpha_{i} v_{i}, v_{j}\right\rangle=\sum_{i=1}^{n} \alpha_{i}\left\langle v_{i}, v_{j}\right\rangle=\alpha_{j}
$$

Hence, all $\alpha_{j}=0$ which is a contradiction.
4. We argue by induction on n. Suppose that e_{1}, \ldots, e_{n} are orthonormal and $\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)=\operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$. (Clearly, this holds when $n=1$.) Then because x_{1}, \ldots, x_{n+1} are linearly independent, $x_{n+1} \notin$ $\operatorname{span}\left(e_{1}, \ldots, e_{n}\right)$, and it follows that $f_{n} \neq 0$. Hence, e_{n+1} is well-defined and has norm one. Moreover, for $i \leq n$,

$$
\left\langle f_{n+1}, e_{i}\right\rangle=\left\langle x_{n+1}, e_{i}\right\rangle-\sum_{k=1}^{n}\left\langle x_{n+1}, e_{k}\right\rangle\left\langle e_{k}, e_{i}\right\rangle=0
$$

so that $f_{n+1} \perp e_{i}$ and $e_{n+1} \perp e_{i}$ for $i \leq n$. This proves that e_{1}, \ldots, e_{n+1} are orthonormal. Also, since $f_{n}=x_{n}-\sum_{k=1}^{n-1}\left\langle x_{n}, e_{k}\right\rangle e_{k}$,

$$
\operatorname{span}\left(e_{1}, \ldots, e_{n+1}\right)=\operatorname{span}\left(x_{1}, \ldots x_{n}, f_{n+1}\right)=\operatorname{span}\left(x_{1}, \ldots, x_{n+1}\right)
$$

as required.
5. Let $\left(e_{n}\right)_{n \geq 1}$ and $\left(f_{n}\right)_{n \geq 1}$ be complete orthonormal sequences for H and K respectively. We define the map $U: H \rightarrow K$ by

$$
U(x)=\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle f_{n} .
$$

Since $\left(e_{n}\right)_{n \geq 1}$ is complete, $\sum_{n=1}^{\infty}\left|\left\langle x, e_{n}\right\rangle\right|^{2}=\|x\|^{2}<\infty$, so that the series converges, and U is well defined. Linearity of U follows from linearity of the inner product. For $x, y \in H$

$$
\begin{aligned}
\langle U(x), U(y)\rangle & =\left\langle\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle f_{n}, \sum_{m=1}^{\infty}\left\langle x, e_{m}\right\rangle f_{m}\right\rangle \\
& =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left\langle x, e_{n}\right\rangle \overline{\left\langle x, e_{m}\right\rangle}\left\langle f_{n}, f_{m}\right\rangle \\
& =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty}\left\langle x, e_{n}\right\rangle \overline{\left\langle x, e_{m}\right\rangle}\left\langle e_{n}, e_{m}\right\rangle \\
& =\left\langle\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle e_{n}, \sum_{m=1}^{\infty}\left\langle x, e_{m}\right\rangle e_{m}\right\rangle=\langle x, y\rangle .
\end{aligned}
$$

In particular, $\|U(x)\|=\|x\|$, so that if $U(x)=0$, then $x=0$. This shows that U is injective. To prove surjectivity, let us take $z \in K$, then $z=\sum_{n=1}^{\infty}\left\langle x, f_{n}\right\rangle f_{n}$ and sum $_{n=1}^{\infty}\left|\left\langle x, f_{n}\right\rangle\right|^{2}<\infty$. Hence, the series $x=\sum_{n=1}^{\infty}\left\langle x, f_{n}\right\rangle e_{n}$ converges, and $U(x)=z$.
6. Let $f(x)=x, x \in[-\pi, \pi]$. We use that $e_{n}(x)=\frac{1}{\sqrt{2 \pi}} e^{i n x}, n \in \mathbb{Z}$, is a complete orthonormal set of $L^{2}([-\pi, \pi])$. Hence,

$$
\|f\|_{2}^{2}=\sum_{n \in \mathbb{Z}}\left|\left\langle f, e_{n}\right\rangle\right|^{2} .
$$

Direct computations show that

$$
\begin{gathered}
\|f\|^{2}=\int_{-\pi}^{\pi} x^{2} d x=2 \pi^{3} / 3 \\
\left\langle f, e_{0}\right\rangle=\int_{-\pi}^{\pi} x d x=0
\end{gathered}
$$

and

$$
\left|\left\langle f, e_{n}\right\rangle\right|=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} x e^{-i n x} d x=\frac{\sqrt{2 \pi}}{|n|}
$$

The above formula implies that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

