
Functional Analysis Exercise sheet 4 — solutions

1. If x, y ∈ A⊥, then for every v ∈ A,

〈αx+ βy, v〉 = α 〈x, v〉+ β 〈y, v〉 = 0.

Hence, A⊥ is a subspace.

Let xn ∈ x and xn ∈ A⊥. Then for every v ∈ A,

〈x, v〉 = lim
n→∞

〈xn, v〉 = 0.

Hence, x ∈ A⊥. This shows that A⊥ is closed.

2. For every x ∈ A and y ∈ A⊥, we have 〈x, y〉 = 0, so that A ⊂ (A⊥)⊥.
By the previous problem, (A⊥)⊥ is a closed subspace. Hence, it follows
that span(A) ⊂ (A⊥)⊥, and span(A) ⊂ (A⊥)⊥.

Let V = span(A). It is a closed subspace. We claim that V ⊥ = A⊥.
Since A ⊂ V , it is clear from the definition of orthogonal complement
that A⊥ ⊃ V ⊥. Conversely, let x ∈ A⊥. Then 〈x, y〉 = 0 for every
y ∈ A, and it follows that also 〈x, y〉 = 0 for every y ∈ span(A) and
for every y ∈ span(A), that is, x ∈ V ⊥. This proves that V ⊥ = A⊥.

We have the orthogonal decomposition H = V ⊕ V ⊥. Let x ∈ (A⊥)⊥

and x = v + w with v ∈ V and w ∈ V ⊥ = A⊥. Then

0 = 〈w, x〉 = 〈w, v〉+ 〈w,w〉 = 〈w,w〉 .

Hence, w = 0. This shows that (A⊥)⊥ ⊂ V = span(A).

3. We can take M to be any proper dense subspace of `2. (For example,
one can take to consist of sequences (xn)n≥1 such that xn = 0 for all
but finitely many n. ) Then given x ∈M⊥, we can a sequence xn ∈M
such that xn → x. We obtain 〈x, x〉 = limn→∞ 〈x, xn〉 = 0, so that
x = 0. This shows that M⊥ = 0. Since M is proper, M ⊕M⊥ 6= `2.

4. For every y, ‖Ay‖ ≤ ‖A‖‖y‖. Hence,

‖A(Bx)‖ ≤ ‖A‖‖Bx‖ ≤ ‖A‖‖B‖‖x‖.

This implies that ‖AB‖ ≤ ‖A‖‖B‖.
In general, it is not true that ‖AB‖ = ‖A‖‖B‖. For instance, consider

A : `2 → `2 : (x1, x2, . . .) 7→ (x2, 0, . . .)

Then ‖A‖ = 1, but A2 = 0.
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5. First, we show that ‖Tx‖ = ‖x‖∞. We have

|Tx(y)| =

∣∣∣∣∣
∞∑
n=1

xnyn

∣∣∣∣∣ ≤
∞∑
n=1

|xn||yn| ≤ ‖x‖∞
∞∑
n=1

|yn| = ‖x‖∞‖y‖1.

Hence, ‖Tx‖ ≤ ‖x‖∞. To prove the opposite inequality, we observe
that for every ε > 0, there exists k such that |xk| > ‖x‖∞ − ε. Then
|Tx(ek)| = |xk| > ‖x‖∞ − ε and ‖ek‖1 = 1. Thus, ‖Tx‖ ≥ ‖x‖∞ − ε for
every ε > 0, which implies the claim.

Suppose that there exists y ∈ `1 such that ‖y‖1 = 1 and |Tx(y)| =
‖x‖∞. Then in the above inequality, we must have |xn||yn| = ‖x‖∞|yn|
for all n. Since ‖y‖1 = 1, yn 6= 0 for some n. Hence, it follows that for
some n, |xn| = ‖x‖∞. Conversely, suppose that |xn| = ‖x‖∞ for some
n. Then |Tx(en)| = ‖x‖∞.

Thus, such y exists if and only if supn≥1 |xn| is achieved.

6. Since

‖Aφf‖22 =

∫ 1

0
|φ(x)f(x)|2 dx ≤ ‖φ‖2∞

∫ 1

0
|f(x)|2 dx = ‖φ‖2∞‖f‖22,

it follows ‖Aφ‖ ≤ ‖φ‖∞.

We claim that ‖Aφ‖ ≤ ‖φ‖∞. Let x0 ∈ [0, 1] be such that |φ(x0)| =
‖φ‖∞. For every ε > 0, there exists δ > 0 such that |φ(x)−φ(x0)| < ε
provided that |x− x0| < δ. We take a non-zero continuous function f
supported on δ-neighbourhood of x0. Then

‖Aφf‖22 =

∫ 1

0
|φ(x)f(x)|2 dx ≥

∫ 1

0
(|φ(x0)| − ε)2|f(x)|2 dx

= (‖φ‖∞ − ε)2‖f‖22

for every ε > 0. This implies the claim.

7. For every y ∈ `1, we define fy(x) =
∑∞

n=1 ynxn. Then

|fy(x)| =
∞∑
n=1

|yn||xn| ≤ ‖y‖1‖x‖∞

Hence, the series converges absolutely, and fy is well-defined. More-
over, it is clear that fy is linear, and ‖fy‖ ≤ ‖y‖1.

We claim that ‖fy‖ = ‖y‖1. For every ε > 0, there exists N such

that
∑N

n=1 |yn| ≥ ‖y‖1 − ε. Let x ∈ c0 be such that xn = ȳn
|yn| for

n ≤ N (if yn = 0, we set xn = 0), and xn = 0 for n > N . Then
fy(x) =

∑N
n=1 |yn| ≥ ‖y‖1 − ε. Also, ‖x‖∞ = 1 for sufficiently large

N . This implies that ‖fy‖ ≥ ‖y‖1 − ε for every ε > 0.
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We have a norm-preserving linear map `1 → c0: y 7→ fy. If fy = 0,
then ‖y‖1 = ‖fy‖ = 0. Hence, this map is injective. It remains to
show that this map is surjective.

Given x ∈ c0, we define x(N) ∈ c0 as follows: x
(N)
n = xn for n ≤ N and

x
(N)
n = 0 for n > N . Since xn → 0,

‖x− x(N)‖∞ = sup
n>N
|xn| → 0

as N → ∞. In particular, it follows that the space cfin, the space
generated by en’s, is dense in c0.

Take any f ∈ (c0)∗. Let yn = f(en). Given N ≥ 1, we define xn = ȳn
|yn|

for n ≤ N (if yn = 0, we set xn = 0), and xn = 0 for n > N . Then
x = (xn)n≥1 is in c0 and ‖x‖∞ ≤ 1. We have

f(x) =
N∑
n=1

xnf(en) =
N∑
n=1

|yn|,

and |f(x)| ≤ ‖f‖‖x‖∞ ≤ ‖f‖. Hence, y = (yn)n≥1 ∈ `1.

Finally, we claim that f = fy. Indeed, f(en) = fy(en), so that f = fy
on cfin. Hence, since cfin is dense in c0, it follows that f = fy on c0.
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