
Functional Analysis Exercise sheet 5 — solutions

1. Recall that ‖B1B2‖ ≤ ‖B1‖‖B2‖ and ‖A∗‖ ≤ ‖A‖. Hence,

‖A∗A‖ ≤ ‖A∗‖‖A‖ ≤ ‖A‖2.

To prove the other inequality, we observe that

‖A‖2 = sup{‖Ax‖2 : ‖x‖ ≤ 1},

and by the Cauchy-Schwarz inequality,

‖Ax‖2 = | 〈Ax,Ax〉 | ≤ | 〈A∗Ax, x〉 | ≤ ‖A∗A‖‖x‖2 ≤ ‖A∗A‖

when ‖x‖ ≤ 1.

2. Let (xn)n≥1 be a bounded sequence. Then since A is compact, there
is a convergent subsequence (xni)i≥1 such that Axni converges. More-
over, since B is compact, there is a subsequence (xnij

)j≥1 such that
Bxnij

converges. Hence, Axnij
+ Bxnij

also converges. This shows
that A+B is compact.

Let (xn)n≥1 be a bounded sequence. Then ‖Bxn‖ ≤ ‖B‖‖xn‖, so
that the sequence (Bxn)n≥1 is also bounded. Since A is compact, it
follows that (A(Bxn))n≥1 has a convergent subsequence. Hence, AB
is compact.

Let (xn)n≥1 be a bounded sequence. Since A is compact, it contains a
subsequence (xni)i≥1 such that Axni → y. The operator B is bounded
and, hence, continuous, so that BAxni → By. This proves that BA is
compact.

3. Suppose that f is an eigenvector with eigenvalue λ. Then
∫ x
0 f(t)dt =

λf(x). If λ = 0, it follows from the fundamental theorem of calculus
that f = 0, so that 0 is not an eigenvalue. If λ 6= 0, this equality
implies that f is differentiable, and f ′(x) = λ−1f(x). This equation
has a solution f(x) = eλ

−1x. Hence, every λ 6= 0 is an eigenvalue.

4. Suppose that f is an eigenvector with eigenvalue λ. This means that
xf(x) = λf(x) for all x ∈ [0, 1]. Then f(x) = 0 for all x 6= λ, and
since f is continuous, f is identically zero. Hence, this operator has
no eigenvalues.

We claim that this operator is not compact. Indeed, suppose that it
is compact. We note that it is also self-adjoint. So that it must have
a non-trivial eigenvalue, and this contradicts the first part.
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5. If Ax = λx with x 6= 0, then 〈Ax, x〉 = λ 〈x, x〉 ≥ 0. Hence, λ ≥ 0.

Recall that by the spectral theorem, there exists an orthonormal set
(en)n≥1 such that

Ax =
∞∑
n=1

λn 〈x, en〉 en, x ∈ H,

where λn’s are the eigenvalues of A. We consider the operator

Bx =
∞∑
n=1

λ1/2n 〈x, en〉 en, x ∈ H.

We note that the set eigenvalues is bounded, so that this Fourier series
converges by the criteria from the lecture notes, and the operator B
is well-defined. Since (en)n≥1 is orthonormal,

B2x =
∞∑
n=1

λ1/2n 〈Bx, en〉 en

=

∞∑
n=1

∞∑
m=1

λ1/2n λ1/2m 〈x, em〉 〈em, en〉 en

=

∞∑
n=1

λn 〈x, en〉 en = Ax.

Hence, B2 = A. Since

〈Bx, y〉 =
∞∑
n=1

λ1/2n 〈x, en〉 〈en, y〉 =

〈
x,
∞∑
n=1

λ1/2n 〈y, en〉 en

〉
= 〈x,By〉 ,

B is self-adjoint.

6. By the spectral theorem, there exists an orthonormal set (en)n≥1 such
that

Ax =
∞∑
k=1

λk 〈x, ek〉 ek, x ∈ H

where λn’s are the eigenvalues of A. It follows from our assumption on
A that all the eigenvalues of A are non-zero. Moreover, we claim that
the orthonormal set (en)n≥1 is complete. Indeed, if x is orthogonal
to all en’s, then it follows that Ax = 0. Hence, according to our
assumption, x = 0, and this shows that (en)n≥1 is complete. We
define An by

Anx =
n∑
i=1

λ−1i 〈x, ei〉 ei, x ∈ H.
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Then

AnAx =

n∑
i=1

λ−1i 〈Ax, ei〉 ei

=

n∑
i=1

∞∑
k=1

λ−1i λk 〈x, ek〉 〈ek, ei〉 ei

=

n∑
i=1

〈x, ei〉 ei.

Since (en)n≥1 is a complete orthonormal set, for every x ∈ H,

x =
∞∑
i=1

〈x, ei〉 ei.

Hence,

‖AnAx− x‖ =

∥∥∥∥∥
∞∑

i=n+1

〈x, ei〉 ei

∥∥∥∥∥ =

√√√√ ∞∑
i=n+1

| 〈x, ei〉 |2 → 0.

This proves (a).

Let B = A∗A. Since A is compact, B is compact too. The operator B
is also self-adjoint because (A∗A)∗ = A∗(A∗)∗ = A∗A. Applying part
(a), we deduce that there exists a sequence of operators Bn such that
BnBx→ x for all x ∈ H. We set An = BnA

∗. Then AnA = BnA
∗A =

BnB. Hence, AnAx→ x for all x ∈ H. This proves (b).

Suppose that there exist An’s such that AnA → I in norm. Since
A is compact, AnA is also compact. Then it follows that its norm
limit is also compact. However, we know that I is not compact if H
is infinite-dimensional. Hence, such An’s may exist only when H has
finite dimension.
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