Functional Analysis Exercise sheet 5 — solutions

1. Recall that $||B_1B_2|| \le ||B_1|| ||B_2||$ and $||A^*|| \le ||A||$. Hence,

 $||A^*A|| \le ||A^*|| ||A|| \le ||A||^2.$

To prove the other inequality, we observe that

$$||A||^{2} = \sup\{||Ax||^{2} : ||x|| \le 1\},\$$

and by the Cauchy-Schwarz inequality,

$$||Ax||^{2} = |\langle Ax, Ax \rangle| \le |\langle A^{*}Ax, x \rangle| \le ||A^{*}A|| ||x||^{2} \le ||A^{*}A||$$

when $||x|| \leq 1$.

2. Let $(x_n)_{n\geq 1}$ be a bounded sequence. Then since A is compact, there is a convergent subsequence $(x_{n_i})_{i\geq 1}$ such that Ax_{n_i} converges. Moreover, since B is compact, there is a subsequence $(x_{n_{i_j}})_{j\geq 1}$ such that $Bx_{n_{i_j}}$ converges. Hence, $Ax_{n_{i_j}} + Bx_{n_{i_j}}$ also converges. This shows that A + B is compact.

Let $(x_n)_{n\geq 1}$ be a bounded sequence. Then $||Bx_n|| \leq ||B|| ||x_n||$, so that the sequence $(Bx_n)_{n\geq 1}$ is also bounded. Since A is compact, it follows that $(A(Bx_n))_{n\geq 1}$ has a convergent subsequence. Hence, AB is compact.

Let $(x_n)_{n\geq 1}$ be a bounded sequence. Since A is compact, it contains a subsequence $(x_{n_i})_{i\geq 1}$ such that $Ax_{n_i} \to y$. The operator B is bounded and, hence, continuous, so that $BAx_{n_i} \to By$. This proves that BA is compact.

- 3. Suppose that f is an eigenvector with eigenvalue λ . Then $\int_0^x f(t)dt = \lambda f(x)$. If $\lambda = 0$, it follows from the fundamental theorem of calculus that f = 0, so that 0 is not an eigenvalue. If $\lambda \neq 0$, this equality implies that f is differentiable, and $f'(x) = \lambda^{-1}f(x)$. This equation has a solution $f(x) = e^{\lambda^{-1}x}$. Hence, every $\lambda \neq 0$ is an eigenvalue.
- 4. Suppose that f is an eigenvector with eigenvalue λ . This means that $xf(x) = \lambda f(x)$ for all $x \in [0, 1]$. Then f(x) = 0 for all $x \neq \lambda$, and since f is continuous, f is identically zero. Hence, this operator has no eigenvalues.

We claim that this operator is not compact. Indeed, suppose that it is compact. We note that it is also self-adjoint. So that it must have a non-trivial eigenvalue, and this contradicts the first part. 5. If $Ax = \lambda x$ with $x \neq 0$, then $\langle Ax, x \rangle = \lambda \langle x, x \rangle \ge 0$. Hence, $\lambda \ge 0$.

Recall that by the spectral theorem, there exists an orthonormal set $(e_n)_{n\geq 1}$ such that

$$Ax = \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n, \quad x \in H,$$

where λ_n 's are the eigenvalues of A. We consider the operator

$$Bx = \sum_{n=1}^{\infty} \lambda_n^{1/2} \langle x, e_n \rangle e_n, \quad x \in H.$$

We note that the set eigenvalues is bounded, so that this Fourier series converges by the criteria from the lecture notes, and the operator B is well-defined. Since $(e_n)_{n>1}$ is orthonormal,

$$B^{2}x = \sum_{n=1}^{\infty} \lambda_{n}^{1/2} \langle Bx, e_{n} \rangle e_{n}$$
$$= \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \lambda_{n}^{1/2} \lambda_{m}^{1/2} \langle x, e_{m} \rangle \langle e_{m}, e_{n} \rangle e_{n}$$
$$= \sum_{n=1}^{\infty} \lambda_{n} \langle x, e_{n} \rangle e_{n} = Ax.$$

Hence, $B^2 = A$. Since

$$\left\langle Bx,y\right\rangle = \sum_{n=1}^{\infty} \lambda_n^{1/2} \left\langle x,e_n\right\rangle \left\langle e_n,y\right\rangle = \left\langle x,\sum_{n=1}^{\infty} \lambda_n^{1/2} \left\langle y,e_n\right\rangle e_n\right\rangle = \left\langle x,By\right\rangle,$$

B is self-adjoint.

6. By the spectral theorem, there exists an orthonormal set $(e_n)_{n\geq 1}$ such that

$$Ax = \sum_{k=1}^{\infty} \lambda_k \langle x, e_k \rangle e_k, \quad x \in H$$

where λ_n 's are the eigenvalues of A. It follows from our assumption on A that all the eigenvalues of A are non-zero. Moreover, we claim that the orthonormal set $(e_n)_{n\geq 1}$ is complete. Indeed, if x is orthogonal to all e_n 's, then it follows that Ax = 0. Hence, according to our assumption, x = 0, and this shows that $(e_n)_{n\geq 1}$ is complete. We define A_n by

$$A_n x = \sum_{i=1}^n \lambda_i^{-1} \langle x, e_i \rangle e_i, \quad x \in H.$$

Then

$$A_n A x = \sum_{i=1}^n \lambda_i^{-1} \langle A x, e_i \rangle e_i$$

=
$$\sum_{i=1}^n \sum_{k=1}^\infty \lambda_i^{-1} \lambda_k \langle x, e_k \rangle \langle e_k, e_i \rangle e_i$$

=
$$\sum_{i=1}^n \langle x, e_i \rangle e_i.$$

Since $(e_n)_{n\geq 1}$ is a complete orthonormal set, for every $x \in H$,

$$x = \sum_{i=1}^{\infty} \langle x, e_i \rangle e_i.$$

Hence,

$$\|A_nAx - x\| = \left\|\sum_{i=n+1}^{\infty} \langle x, e_i \rangle e_i\right\| = \sqrt{\sum_{i=n+1}^{\infty} |\langle x, e_i \rangle|^2} \to 0.$$

This proves (a).

Let $B = A^*A$. Since A is compact, B is compact too. The operator B is also self-adjoint because $(A^*A)^* = A^*(A^*)^* = A^*A$. Applying part (a), we deduce that there exists a sequence of operators B_n such that $B_nBx \to x$ for all $x \in H$. We set $A_n = B_nA^*$. Then $A_nA = B_nA^*A = B_nB$. Hence, $A_nAx \to x$ for all $x \in H$. This proves (b).

Suppose that there exist A_n 's such that $A_nA \to I$ in norm. Since A is compact, A_nA is also compact. Then it follows that its norm limit is also compact. However, we know that I is not compact if H is infinite-dimensional. Hence, such A_n 's may exist only when H has finite dimension.