
Functional Analysis Exercise sheet 6 — solutions

1. Let S be a collection of linearly independent subsets of V ordered with
respect to inclusion. We would like to apply the Zorn Lemma to S.
Let C be a chain in S. We claim that it has an upper bound. Indeed,
let C = ∪S∈CS. Then clearly S ⊂ C for every S ∈ C. If C is not
linearly independent, then there exists finitely many v1, . . . , vn ∈ C
which are linearly dependent. Then vi ∈ Si for some Si ∈ C. Since C
is a chain, S1, . . . , Sn has a maximal element Si0 . Since Si0 consists
of linearly independent vectors, it follows that v1, . . . , vn ∈ Si0 are
linearly independent. Hence, C ∈ S, and it gives un upper bound for
C. Now by the Zorn Lemma, there exists a maximal element M ∈ S.
Then for every v ∈ V \M , the set M ∪{v} is not linearly independent.
This means that there exist w1, . . . , wn ∈M and scalars α1, . . . , αn+1,
not all zero, such that

α1w1 + · · ·+ αnwn + αn+1v = 0.

We note that if αn+1 = 0, then w1, . . . , wn would have been linearly
dependent, but this is impossible because M ∈ S, and

v = (α−1n+1α1)w1 + · · ·+ (α−1n+1αn)wn.

Therefore, M gives a Hamel basis.

2. We observe that since p is sublinear, p(x) − p(y) ≤ p(x − y) and
p(y)− p(x) ≤ p(y − x). Hence,

|p(x)− p(y)| ≤ max{p(x− y), p(y − x)}.

Since p is continuous at 0, for every ε > 0, there exists δ > 0 such that
|p(x)| < ε when ‖x‖, δ. Hence, it follows that |p(x) − p(y)| < ε when
‖x− y‖ < δ. This proves that p is continuous on X.

3. Since t−1x→ 0 as t→∞, it follows that t−1x ∈ K for all sufficiently
large x. Hence, p(x) is well defined.

It is also clear p(0) = inf{t > 0} = 0. Also, for a > 0,

p(ax) = inf{t > 0 : t−1ax ∈ K} = inf{as : s−1x ∈ K, s > 0} = ap(x).

Let x, y ∈ X and t−1x ∈ K, s−1x ∈ K for some t, s > 0. Then since
K is convex,

t

t+ s
t−1x+

t

t+ s
s−1x = (t+ s)−1(x+ y) ∈ K.

Hence, it follows that
p(x+ y) ≤ t+ s.
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Since this bound holds for all t, s > 0 such that t−1x ∈ K, s−1x ∈ K,
we conclude that

p(x+ y) ≤ p(x) + p(y).

4. For x, y ∈ `∞, we say that x ≤ y if xn ≤ yn for all n. It follows from
our assumption on f that if x ≤ y, then f(x) ≤ f(y).

Let e = (1, 1, . . .) ∈ `∞. Then for every x ∈ `∞,

−‖x‖∞ · e ≤ x ≤ ‖x‖∞ · e.

Hence,
−‖x‖∞ · f(e) ≤ f(x) ≤ ‖x‖∞ · f(e),

and |f(x)| ≤ f(e)‖x‖∞. This implies that ‖f‖ ≤ f(e).

5. First, we note that if a1x0 + s1 = a2x0 + s2 ∈ 〈x0, S〉 with a1 6= a2.
Then x0 = (a1 − a2)−1(s2 − s1) ∈ S. However, x0 /∈ S. Hence, the
parameter a is uniquely determined, and f is well-defined.

Suppose that x0 ∈ S̄. Then there exists sn ∈ S such that sn → x0.
We obtain

f

(
x0 − sn
‖x0 − sn‖

)
= f

(
‖x0 − sn‖−1x0 +

−sn
‖x0 − sn‖

)
= ‖x0−sn‖−1 →∞.

Note that ‖x0 − sn‖ 6= 0 because x0 /∈ S. This computation implies
that ‖f‖ =∞.

Conversely suppose that ‖f‖ =∞. Then for some nonzero anx0+sn ∈
〈x0, S〉,

f

(
anx0 + sn
‖anx0 + sn‖

)
=

an
‖anx0 + sn‖

→ ∞.

Hence, ‖x0 + a−1n sn‖ → 0 and a−1n sn → x0. This proves that x0 ∈ S̄.
We have completed the proof of (a).

Let x ∈ S̄ and f ∈ X∗ satisfy f(S) = 0. Then sn → x for some sn ∈ S,
and it follows from continuity of f that f(x) = 0. This proves that

S̄ ⊂ {x ∈ X : f(x) = 0 for all f ∈ X∗ such that f(S) = 0 }.

Now suppose that x0 /∈ S̄. Then by (a) there exists a bounded linear
functional f on 〈x0, S〉 such that f(x0) 6= 0. By the Hahn-Banach
Theorem, f can be extended to a bounded linear functional on X.
This proves that there exists f ∈ X∗ such that f(x0) 6= 0. Hence, the
equality in (b) holds.
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6. Let v1, . . . , vn be a basis of Y . We define a linear functionals f1, . . . , fn
on Y by fi(vj) = 0 if i 6= j and fi(vi) = 1. Since bounded subsets of a
finite dimensional space are compact, it is clear that fi’s are bounded.
By the Hahn-Banach Theorem, fi’s can be extended to bounded linear
functionals on X. We take

Z = {x ∈ X : f1(x) = · · · = fn(x) = 0}.

Since fi’s are bounded (hence, continuous), Z is a closed subspace of
X. If x = α1v1 + · · · + αnvn ∈ Y , then fi(x) = αi. Hence, if such
x ∈ Z, then x = 0. This shows that Y ∩Z = 0. Given a general vector
x ∈ X, we can write it as

x =

n∑
i=1

fi(x)vi +

(
x−

n∑
i=1

fi(x)vi

)
.

The first term belongs to Y , and it is easy to check that the second
term belongs to Z. Hence, we deduce that X = Y ⊕ Z as required.
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