Functional Analysis Exercise sheet 6 — solutions

1. Let S be a collection of linearly independent subsets of V ordered with respect to inclusion. We would like to apply the Zorn Lemma to S. Let C be a chain in S. We claim that it has an upper bound. Indeed, let $C = \bigcup_{S \in C} S$. Then clearly $S \subset C$ for every $S \in C$. If C is not linearly independent, then there exists finitely many $v_1, \ldots, v_n \in C$ which are linearly dependent. Then $v_i \in S_i$ for some $S_i \in C$. Since Cis a chain, S_1, \ldots, S_n has a maximal element S_{i_0} . Since S_{i_0} consists of linearly independent vectors, it follows that $v_1, \ldots, v_n \in S_{i_0}$ are linearly independent. Hence, $C \in S$, and it gives un upper bound for C. Now by the Zorn Lemma, there exists a maximal element $M \in S$. Then for every $v \in V \setminus M$, the set $M \cup \{v\}$ is not linearly independent. This means that there exist $w_1, \ldots, w_n \in M$ and scalars $\alpha_1, \ldots, \alpha_{n+1}$, not all zero, such that

$$\alpha_1 w_1 + \dots + \alpha_n w_n + \alpha_{n+1} v = 0.$$

We note that if $\alpha_{n+1} = 0$, then w_1, \ldots, w_n would have been linearly dependent, but this is impossible because $M \in S$, and

$$v = (\alpha_{n+1}^{-1}\alpha_1)w_1 + \dots + (\alpha_{n+1}^{-1}\alpha_n)w_n.$$

Therefore, M gives a Hamel basis.

2. We observe that since p is sublinear, $p(x) - p(y) \le p(x - y)$ and $p(y) - p(x) \le p(y - x)$. Hence,

$$|p(x) - p(y)| \le \max\{p(x - y), p(y - x)\}.$$

Since p is continuous at 0, for every $\epsilon > 0$, there exists $\delta > 0$ such that $|p(x)| < \epsilon$ when $||x||, \delta$. Hence, it follows that $|p(x) - p(y)| < \epsilon$ when $||x - y|| < \delta$. This proves that p is continuous on X.

3. Since $t^{-1}x \to 0$ as $t \to \infty$, it follows that $t^{-1}x \in K$ for all sufficiently large x. Hence, p(x) is well defined.

It is also clear $p(0) = \inf\{t > 0\} = 0$. Also, for a > 0,

$$p(ax) = \inf\{t > 0 : t^{-1}ax \in K\} = \inf\{as : s^{-1}x \in K, s > 0\} = ap(x).$$

Let $x, y \in X$ and $t^{-1}x \in K$, $s^{-1}x \in K$ for some t, s > 0. Then since K is convex,

$$\frac{t}{t+s}t^{-1}x + \frac{t}{t+s}s^{-1}x = (t+s)^{-1}(x+y) \in K.$$

Hence, it follows that

$$p(x+y) \le t+s.$$

Since this bound holds for all t, s > 0 such that $t^{-1}x \in K$, $s^{-1}x \in K$, we conclude that

$$p(x+y) \le p(x) + p(y).$$

4. For $x, y \in \ell^{\infty}$, we say that $x \leq y$ if $x_n \leq y_n$ for all n. It follows from our assumption on f that if $x \leq y$, then $f(x) \leq f(y)$.

Let $e = (1, 1, \ldots) \in \ell^{\infty}$. Then for every $x \in \ell^{\infty}$,

$$-\|x\|_{\infty} \cdot e \le x \le \|x\|_{\infty} \cdot e.$$

Hence,

$$-\|x\|_{\infty} \cdot f(e) \le f(x) \le \|x\|_{\infty} \cdot f(e),$$

and $|f(x)| \le f(e) ||x||_{\infty}$. This implies that $||f|| \le f(e)$.

5. First, we note that if $a_1x_0 + s_1 = a_2x_0 + s_2 \in \langle x_0, S \rangle$ with $a_1 \neq a_2$. Then $x_0 = (a_1 - a_2)^{-1}(s_2 - s_1) \in S$. However, $x_0 \notin S$. Hence, the parameter a is uniquely determined, and f is well-defined.

Suppose that $x_0 \in \overline{S}$. Then there exists $s_n \in S$ such that $s_n \to x_0$. We obtain

$$f\left(\frac{x_0 - s_n}{\|x_0 - s_n\|}\right) = f\left(\|x_0 - s_n\|^{-1}x_0 + \frac{-s_n}{\|x_0 - s_n\|}\right) = \|x_0 - s_n\|^{-1} \to \infty$$

Note that $||x_0 - s_n|| \neq 0$ because $x_0 \notin S$. This computation implies that $||f|| = \infty$.

Conversely suppose that $||f|| = \infty$. Then for some nonzero $a_n x_0 + s_n \in \langle x_0, S \rangle$,

$$f\left(\frac{a_n x_0 + s_n}{\|a_n x_0 + s_n\|}\right) = \frac{a_n}{\|a_n x_0 + s_n\|} \to \infty.$$

Hence, $||x_0 + a_n^{-1}s_n|| \to 0$ and $a_n^{-1}s_n \to x_0$. This proves that $x_0 \in \overline{S}$. We have completed the proof of (a).

Let $x \in \overline{S}$ and $f \in X^*$ satisfy f(S) = 0. Then $s_n \to x$ for some $s_n \in S$, and it follows from continuity of f that f(x) = 0. This proves that

$$\overline{S} \subset \{x \in X : f(x) = 0 \text{ for all } f \in X^* \text{ such that } f(S) = 0 \}.$$

Now suppose that $x_0 \notin \overline{S}$. Then by (a) there exists a bounded linear functional f on $\langle x_0, S \rangle$ such that $f(x_0) \neq 0$. By the Hahn-Banach Theorem, f can be extended to a bounded linear functional on X. This proves that there exists $f \in X^*$ such that $f(x_0) \neq 0$. Hence, the equality in (b) holds.

6. Let v_1, \ldots, v_n be a basis of Y. We define a linear functionals f_1, \ldots, f_n on Y by $f_i(v_j) = 0$ if $i \neq j$ and $f_i(v_i) = 1$. Since bounded subsets of a finite dimensional space are compact, it is clear that f_i 's are bounded. By the Hahn-Banach Theorem, f_i 's can be extended to bounded linear functionals on X. We take

$$Z = \{ x \in X : f_1(x) = \dots = f_n(x) = 0 \}.$$

Since f_i 's are bounded (hence, continuous), Z is a closed subspace of X. If $x = \alpha_1 v_1 + \cdots + \alpha_n v_n \in Y$, then $f_i(x) = \alpha_i$. Hence, if such $x \in Z$, then x = 0. This shows that $Y \cap Z = 0$. Given a general vector $x \in X$, we can write it as

$$x = \sum_{i=1}^{n} f_i(x)v_i + \left(x - \sum_{i=1}^{n} f_i(x)v_i\right).$$

The first term belongs to Y, and it is easy to check that the second term belongs to Z. Hence, we deduce that $X = Y \oplus Z$ as required.