Functional Analysis Exercise sheet 6 - solutions

1. Let \mathcal{S} be a collection of linearly independent subsets of V ordered with respect to inclusion. We would like to apply the Zorn Lemma to \mathcal{S}. Let \mathcal{C} be a chain in \mathcal{S}. We claim that it has an upper bound. Indeed, let $C=\cup_{S \in \mathcal{C}} S$. Then clearly $S \subset C$ for every $S \in \mathcal{C}$. If C is not linearly independent, then there exists finitely many $v_{1}, \ldots, v_{n} \in C$ which are linearly dependent. Then $v_{i} \in S_{i}$ for some $S_{i} \in \mathcal{C}$. Since \mathcal{C} is a chain, S_{1}, \ldots, S_{n} has a maximal element $S_{i_{0}}$. Since $S_{i_{0}}$ consists of linearly independent vectors, it follows that $v_{1}, \ldots, v_{n} \in S_{i_{0}}$ are linearly independent. Hence, $C \in \mathcal{S}$, and it gives un upper bound for \mathcal{C}. Now by the Zorn Lemma, there exists a maximal element $M \in \mathcal{S}$. Then for every $v \in V \backslash M$, the set $M \cup\{v\}$ is not linearly independent. This means that there exist $w_{1}, \ldots, w_{n} \in M$ and scalars $\alpha_{1}, \ldots, \alpha_{n+1}$, not all zero, such that

$$
\alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}+\alpha_{n+1} v=0
$$

We note that if $\alpha_{n+1}=0$, then w_{1}, \ldots, w_{n} would have been linearly dependent, but this is impossible because $M \in \mathcal{S}$, and

$$
v=\left(\alpha_{n+1}^{-1} \alpha_{1}\right) w_{1}+\cdots+\left(\alpha_{n+1}^{-1} \alpha_{n}\right) w_{n}
$$

Therefore, M gives a Hamel basis.
2. We observe that since p is sublinear, $p(x)-p(y) \leq p(x-y)$ and $p(y)-p(x) \leq p(y-x)$. Hence,

$$
|p(x)-p(y)| \leq \max \{p(x-y), p(y-x)\}
$$

Since p is continuous at 0 , for every $\epsilon>0$, there exists $\delta>0$ such that $|p(x)|<\epsilon$ when $\|x\|, \delta$. Hence, it follows that $|p(x)-p(y)|<\epsilon$ when $\|x-y\|<\delta$. This proves that p is continuous on X.
3. Since $t^{-1} x \rightarrow 0$ as $t \rightarrow \infty$, it follows that $t^{-1} x \in K$ for all sufficiently large x. Hence, $p(x)$ is well defined.
It is also clear $p(0)=\inf \{t>0\}=0$. Also, for $a>0$,
$p(a x)=\inf \left\{t>0: t^{-1} a x \in K\right\}=\inf \left\{a s: s^{-1} x \in K, s>0\right\}=a p(x)$.
Let $x, y \in X$ and $t^{-1} x \in K, s^{-1} x \in K$ for some $t, s>0$. Then since K is convex,

$$
\frac{t}{t+s} t^{-1} x+\frac{t}{t+s} s^{-1} x=(t+s)^{-1}(x+y) \in K
$$

Hence, it follows that

$$
p(x+y) \leq t+s
$$

Since this bound holds for all $t, s>0$ such that $t^{-1} x \in K, s^{-1} x \in K$, we conclude that

$$
p(x+y) \leq p(x)+p(y)
$$

4. For $x, y \in \ell^{\infty}$, we say that $x \leq y$ if $x_{n} \leq y_{n}$ for all n. It follows from our assumption on f that if $x \leq y$, then $f(x) \leq f(y)$.
Let $e=(1,1, \ldots) \in \ell^{\infty}$. Then for every $x \in \ell^{\infty}$,

$$
-\|x\|_{\infty} \cdot e \leq x \leq\|x\|_{\infty} \cdot e
$$

Hence,

$$
-\|x\|_{\infty} \cdot f(e) \leq f(x) \leq\|x\|_{\infty} \cdot f(e)
$$

and $|f(x)| \leq f(e)\|x\|_{\infty}$. This implies that $\|f\| \leq f(e)$.
5. First, we note that if $a_{1} x_{0}+s_{1}=a_{2} x_{0}+s_{2} \in\left\langle x_{0}, S\right\rangle$ with $a_{1} \neq a_{2}$. Then $x_{0}=\left(a_{1}-a_{2}\right)^{-1}\left(s_{2}-s_{1}\right) \in S$. However, $x_{0} \notin S$. Hence, the parameter a is uniquely determined, and f is well-defined.
Suppose that $x_{0} \in \bar{S}$. Then there exists $s_{n} \in S$ such that $s_{n} \rightarrow x_{0}$. We obtain
$f\left(\frac{x_{0}-s_{n}}{\left\|x_{0}-s_{n}\right\|}\right)=f\left(\left\|x_{0}-s_{n}\right\|^{-1} x_{0}+\frac{-s_{n}}{\left\|x_{0}-s_{n}\right\|}\right)=\left\|x_{0}-s_{n}\right\|^{-1} \rightarrow \infty$.
Note that $\left\|x_{0}-s_{n}\right\| \neq 0$ because $x_{0} \notin S$. This computation implies that $\|f\|=\infty$.
Conversely suppose that $\|f\|=\infty$. Then for some nonzero $a_{n} x_{0}+s_{n} \in$ $\left\langle x_{0}, S\right\rangle$,

$$
f\left(\frac{a_{n} x_{0}+s_{n}}{\left\|a_{n} x_{0}+s_{n}\right\|}\right)=\frac{a_{n}}{\left\|a_{n} x_{0}+s_{n}\right\|} \rightarrow \infty
$$

Hence, $\left\|x_{0}+a_{n}^{-1} s_{n}\right\| \rightarrow 0$ and $a_{n}^{-1} s_{n} \rightarrow x_{0}$. This proves that $x_{0} \in \bar{S}$. We have completed the proof of (a).
Let $x \in \bar{S}$ and $f \in X^{*}$ satisfy $f(S)=0$. Then $s_{n} \rightarrow x$ for some $s_{n} \in S$, and it follows from continuity of f that $f(x)=0$. This proves that

$$
\bar{S} \subset\left\{x \in X: f(x)=0 \text { for all } f \in X^{*} \text { such that } f(S)=0\right\}
$$

Now suppose that $x_{0} \notin \bar{S}$. Then by (a) there exists a bounded linear functional f on $\left\langle x_{0}, S\right\rangle$ such that $f\left(x_{0}\right) \neq 0$. By the Hahn-Banach Theorem, f can be extended to a bounded linear functional on X. This proves that there exists $f \in X^{*}$ such that $f\left(x_{0}\right) \neq 0$. Hence, the equality in (b) holds.
6. Let v_{1}, \ldots, v_{n} be a basis of Y. We define a linear functionals f_{1}, \ldots, f_{n} on Y by $f_{i}\left(v_{j}\right)=0$ if $i \neq j$ and $f_{i}\left(v_{i}\right)=1$. Since bounded subsets of a finite dimensional space are compact, it is clear that f_{i} 's are bounded. By the Hahn-Banach Theorem, f_{i} 's can be extended to bounded linear functionals on X. We take

$$
Z=\left\{x \in X: f_{1}(x)=\cdots=f_{n}(x)=0\right\} .
$$

Since f_{i} 's are bounded (hence, continuous), Z is a closed subspace of X. If $x=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n} \in Y$, then $f_{i}(x)=\alpha_{i}$. Hence, if such $x \in Z$, then $x=0$. This shows that $Y \cap Z=0$. Given a general vector $x \in X$, we can write it as

$$
x=\sum_{i=1}^{n} f_{i}(x) v_{i}+\left(x-\sum_{i=1}^{n} f_{i}(x) v_{i}\right) .
$$

The first term belongs to Y, and it is easy to check that the second term belongs to Z. Hence, we deduce that $X=Y \oplus Z$ as required.

