
Functional Analysis Exercise sheet 7 — solutions

1. Every x ∈ H and written as x =
∑∞

n=1 xnen with
∑∞

n=1 |xn|2 < ∞.
To compute the eigenvalues of A we need to solve Ax = λx which is
equivalent to xi+1 = λxi for i ≥ 1. Then x =

∑∞
n=1 x1λ

n−1en is a
general solution (when the series converges). If |λ| < 1, this defines
an element in H, so that all λ with |λ| < 1 are eigenvalues. If |λ| ≥ 1,
the series diverges, so that such λ are not eigenvalues.

Since for every x ∈ H, ‖Ax‖ ≤ ‖x‖, we deduce that ‖A‖ ≤ 1. This
implies that σ(A) ⊂ {|λ| ≤ 1}. We also have {|λ| < 1} ⊂ σ(A). Since
σ(A) is known to be closed, it follows that σ(A) = {|λ| ≤ 1}.

2. Let µ = λn with λ ∈ σ(A). Then the polynomial xn − µ has a root λ,
and xn − µ = (x− λ)g(x) for another polynomial g(x). Suppose that
An − µI has a bounded inverse B, namely,

(An − µI)B = B(An − µI) = I.

We obtain
(A− λI)g(A)B = Bg(A)(A− λI) = I.

Setting C1 = g(A)B and C2 = Bg(A), we get the bounded operators
satisfying

(A− λI)C1 = C2(A− λI) = I.

Moreover,
C1 = C2(A− λI)C1 = C2.

This proves that A − λI is invertible, but λ ∈ σ(A). Hence, An − µI
cannot be invertible not invertible. This proves that

{λn : λ ∈ σ(A)} ⊂ σ(An).

Let µ ∈ σ(An), i.e., An − µI is not invertible. We have

An − µI =
n∏
i=1

(A− λiI),

where λi’s are the roots of xn − µ = 0. If all λi /∈ σ(A), then the
operators A−λiI are invertible, and An−µI would be also invertible.
Hence, we conclude that for some i, A − λiI is not invertible, and
λi ∈ σ(A). This proves that

σ(An) ⊂ {λn : λ ∈ σ(A)}.
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3. We know that `p ( `2 for p < 2. We take x0 ∈ `2\`p. Suppose that
for some y0 ∈ `p and ε > 0,

{y ∈ `2 : ‖y − y0‖2 < ε} ⊂ `p.

Then z = y0 + ε
2‖x0‖2x

0 belongs to this set. However, then x0 =

2‖x0‖2
ε (z − y0) would belong to `p. This gives a contradiction. Hence,

we conclude that `p has empty interior in `2.

We claim that the sets

BR = {x ∈ `2 : ‖x‖p ≤ R}

are closed in `2. Suppose that x(n) = (x
(n)
k )k≥1 ∈ BR and x(n) → x

in `2. This implies that for every k, x
(n)
k → xk as n→∞. Hence, for

every N ≥ 1,

N∑
k=1

|xk|p =

N∑
k=1

lim
n→∞

|x(n)k | = lim
n→∞

N∑
k=1

|x(n)k |
p ≤ Rp,

and

‖x‖pp = lim
N→∞

N∑
k=1

|xk|p ≤ Rp.

This proves the claim.

Since `p = ∪m≥1Bm where Bm’s are closed and have empty interior,
`p is meager in `2.

We observe that ∪p<2`
p = ∪n≥1`2−1/n. Since the sets `2−1/n are mea-

ger, it follows that the union is meager too. By the Baire Category
Theorem, ∪p<2`

p 6= `2. This implies (b).

4. Since B is linear, it is continuous if and only if B is continuous at
0. It is sufficient to show that for xn → 0 and yn → 0, we have
B(xn, yn) → 0. Let Tn(y) = B(xn, y). According to our assumption
the map Tn is continuous, so that it is bounded. For fixed y, the linear
map x 7→ B(x, y) is bounded. Hence, it follows that the sequence
Tn(y) is bounded. Applying the Uniform Boundedness Principle, we
deduce that there exists C > 0 such that ‖Tn‖ ≤ C for all n. Thus,

|B(xn, yn)| = |Tn(yn)| ≤ C‖yn‖ → 0.

This completes the proof.

Let f(x, y) = xy
x2+y2

for (x, y) 6= (0, 0) and f(0, 0) = 0. The func-

tions f(x, ·) and f(·, y) are continuous. However, the function f is not
continous at (0, 0) because f(1/n, 1/n) = 1/2.
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5. Suppose that ‖A‖ = ∞. This means that there exists xn ∈ H such
that ‖yn‖ = 1 and ‖Ayn‖ → ∞. We consider the sequence of maps
fn(x) = 〈x,Ayn〉, x ∈ H. They define bounded linear functionals on
H with ‖fn‖ = ‖Ayn‖ → ∞. On the other hand, for every x ∈ H,

|fn(x)| = | 〈x,Ayn〉 | = | 〈Ax, yn〉 | ≤ ‖Ax‖‖yn‖ = ‖Ax‖.

Hence, it follows from the Uniform Boundedness Principle that the
sequence of norms ‖fn‖ is bounded. This contradiction implies that
‖A‖ <∞.

3


