Functional Analysis Exercise sheet 8 — solutions

1. Each element x_n defines a linear map $L_n : X^* \to \mathbb{C}$ by $L_n(f) = f(x_n)$. Since the sequence $f(x_n)$ is Cauchy, it is bounded. Hence, there exists c = c(f) > 0 such that $|L_n(f)| \le c$ for all n. We note that X^* is also a Banach space. By the Uniform Boundedness Theorem, $\sup_n ||L_n|| < \infty$. Finally,

$$||L_n|| = \sup\{|L_n(f)| : ||f|| = 1\} = \sup\{|f(x_n)| : ||f|| = 1\} = ||x_n||.$$

This proves that the sequence x_n is bounded.

2. (a) Suppose that $||x_n - x|| \to 0$. Then for every $y \in H$,

$$|\langle x_n, y \rangle - \langle x, y \rangle| \le ||x_n - x|| ||y|| \to 0.$$

Hence, $x_n \to x$ weakly. Also by triangle inequality,

 $|||x_n|| - ||x||| \le ||x_n - x|| \to 0.$

To prove the converse, we observe that

$$||x - x_n||^2 = ||x||^2 - \langle x_n, x \rangle - \overline{\langle x_n, x \rangle} + ||x_n||^2.$$

By weak convergence, $\langle x_n, x \rangle \to ||x||^2$. Hence, $||x - x_n||^2 \to 0$ as required.

(b) We have

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| \le |\langle x_n, y_n \rangle - \langle x, y_n \rangle| + |\langle x, y_n \rangle - \langle x, y \rangle|$$

= | \langle x_n - x, y_n \rangle | + | \langle x, y_n - y \rangle |.

Since $y_n \to y$ weakly, the second term converges to zero. By Cauchy-Schwarz inequality,

$$|\langle x_n - x, y_n \rangle| \le ||x_n - x|| ||y_n||.$$

Since y_n is weakly convergent, it is bounded. Hence, it follows that $|\langle x_n - x, y_n \rangle| \to 0$.

- (c) This is not true in general. For example, consider $H = \ell^2$ and $x_n = y_n = e_n$. Then $e_n \to 0$ weakly, but $\langle e_n, e_n \rangle = 1$ does not converge to zero.
- 3. (a) Let L(f) = f(0). We claim that $L_n \to L$ weak^{*}. Since f is continuous, for every $\epsilon > 0$ and $n \ge n_0(\epsilon)$, we have $|f(t) f(0)| < \epsilon$ for all $t \in [0, 1/n]$. Then

$$|L_n(f) - L(f)| \le n \int_0^{1/n} |f(t) - f(0)| \, dt < \epsilon.$$

Hence, $L_n(f) \to L(f)$ for all $f \in C([0, 1])$.

(b) It follows form (a) that if $L_n \to S$ in norm, then S = L. Consider a function f_n such that $0 \le f_n \le 1$, $f_n(0) = 0$, and $f_n = 1$ on $[\frac{1}{3n}, \frac{2}{3n}]$. Then $||f_n|| = 1$, and

$$|L_n(f_n) - L(f_n)| = n \left| \int_0^{1/n} f_n(t) \, dt \right| \ge \frac{1}{3}.$$

Hence, $||L_n - L|| \ge \frac{1}{3}$, and the sequence L_n does not converge in norm.

4. (a) For n < m,

$$||P_n x - P_m x||^2 = \left\| \sum_{k=n+1}^m \langle x, e_k \rangle e_k \right\|^2 = \sum_{k=n+1}^m |\langle x, e_k \rangle|^2.$$

Hence, by the Bessel inequality, $||P_n x - P_m x||^2 \leq ||x||^2$. This proves that $||P_n - P_m|| \leq 1$. For $x = e_m$, $||P_n x - P_m x|| = ||e_m||$. Hence, $||P_n - P_m|| = 1$.

If we suppose $P_n \to P$ for some P in norm, then $||P_n - P_m|| \le ||P_n - P|| + ||P - P_m|| \to 0$ as $n, m \to \infty$, which is impossible.

(b) We recall that for every $x \in H$, $x = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$ and $\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 < \infty$. Hence,

$$\begin{aligned} \|P_n x - Ix\| &= \left\|\sum_{k=n+1}^{\infty} \langle x, e_k \rangle e_k\right\| = \lim_{N \to \infty} \left\|\sum_{k=n+1}^{N} \langle x, e_k \rangle e_k\right\| \\ &= \lim_{N \to \infty} \sqrt{\sum_{k=n+1}^{N} |\langle x, e_k \rangle|^2} = \sqrt{\sum_{k=n+1}^{\infty} |\langle x, e_k \rangle|^2}, \end{aligned}$$

and $||P_n x - Ix|| \to 0$ as $n \to \infty$.

5. (a) We first note that since A_n strongly converge, the sequence of norms $||A_n||$ is bounded. We fix c > 0 such that $||A_n|| \le c$ for all n. For every $x \in X$,

$$||A_n B_n x - ABx|| \le ||A_n B_n x - A_n Bx|| + ||A_n Bx - ABx||$$

$$\le ||A_n|| ||B_n x - Bx|| + ||A_n (Bx) - A(Bx)||$$

$$\le c||B_n x - Bx|| + ||A_n (Bx) - A(Bx)||$$

Since $A_n \xrightarrow{s} A$ and $B_n \xrightarrow{s} B$, we have $||B_n x - Bx|| \to 0$ and $||A_n(Bx) - A(Bx)|| \to 0$. Hence,

$$||A_n B_n x - A B x|| \to 0.$$

(b) Consider the operators $A_n, B_n : \ell^2 \to \ell^2$ defined by $B_n x = \langle x, e_1 \rangle e_n$ and $A_n x = \langle x, e_n \rangle e_1$. For every $x, y \in \ell^2$, $\langle B_n x, y \rangle = \langle x, e_1 \rangle \langle e_n, y \rangle \to 0$, and $||A_n x|| \to 0$. Hence, $A_n \stackrel{s}{\to} A$ and $B_n \stackrel{w}{\to} B$. We also have $A_n B_n x = \langle x, e_1 \rangle e_1$. Hence, $A_n B_n \stackrel{w}{\to} AB$.