Functional Analysis Exercise sheet 9

1. Since for every $x \in X$,

$$
\|T x\|=\sup _{j \geq 1} j^{-1}\left|x_{j}\right| \leq\|x\|,
$$

The inverse of T is computed as

$$
T^{-1}\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots\right) .
$$

Since $\left\|T^{-1} e_{n}\right\|=n$ with $\left\|e_{n}\right\|=1$, it follows that $\left\|T^{-1}\right\|=\infty$. This does not contradict the Open Mapping Theorem because the space X is not complete.
2. Since T is closed, we know that for every sequences $x_{n} \in X$ and $y_{n} \in Y$ such that $T x_{n}=y_{n}$, if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then $T x=y$. Take any x in the closure of $\operatorname{Ker}(T)$. Then there exists $x_{n} \in \operatorname{Ker}(T)$ such that $T x_{n}=0$. Hence, it follows that $T x=0$, so that $x \in \operatorname{Ker}(T)$. This proves that the kernel is closed.
3. Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are norms on vector space X such that $\left(X,\|\cdot\|_{1}\right)$ and $\left(X,\|\cdot\|_{2}\right)$ are complete. Suppose that these norms have the property that for every sequence x_{n},

$$
\left\|x_{n}-x_{1}\right\|_{1} \rightarrow 0 \text { and }\left\|x_{n}-x_{2}\right\|_{2} \rightarrow 0 \Rightarrow x_{1}=x_{2} .
$$

Prove that there exists $c_{1}, c_{2}>0$ such that

$$
c_{1}\|x\|_{1} \leq\|x\|_{2} \leq c_{2}\|x\|_{1} \quad \text { for all } x \in X .
$$

We consider the identity map $I:\left(X,\|\cdot\|_{1}\right) \rightarrow\left(X,\|\cdot\|_{2}\right)$. The graph of I is $\Gamma(I)=\{(x, x): x \in X\}$. It follows from our assumption that if $\left(x_{n}, x_{n}\right) \rightarrow\left(y_{1}, y_{2}\right)$, then $y_{1}=y_{2}$. This implies that $\Gamma(I)$ is closed. Hence, by the Closed Graph Theorem, I is bounded. Moreover, by the Open Mapping Theorem, I^{-1} is bounded too. This implies the result.
4. Suppose that T has an extension \hat{T} which is a closed linear operator. Then $\Gamma(T) \subset \Gamma(\hat{T})$ and $\overline{\Gamma(T)} \subset \Gamma(\hat{T})$. Since $\Gamma(\hat{T})=\{(x, \hat{T} x): x \in \hat{\mathcal{D}}\}$, it is clear that if $(0, y) \in \Gamma(\hat{T})$, then $y=0$. This proves one of the implications.
To prove the other implication, we show that the closure $\overline{\Gamma(T)}$ defines a graph of a linear operator. Since T is linear, it follows that $\Gamma(T)$ and $\overline{\Gamma(T)}$ are linear subspaces in $X \times Y$. Let $\hat{\mathcal{D}}$ be the projection of $\overline{\Gamma(T)}$ to X. If $\left(x, y_{1}\right),\left(x, y_{2}\right) \in \overline{\Gamma(T)}$, then also

$$
\left(x, y_{1}\right)-\left(x, y_{2}\right)=\left(0, y_{1}-y_{2}\right) \in \overline{\Gamma(T)} .
$$

So that according to our assumption, $y_{1}=y_{2}$. This proves for every $x \in \hat{\mathcal{D}}$, there exists a unique $y \in Y$ such that $(x, y) \in \overline{\Gamma(T)}$. Hence, $\overline{\Gamma(T)}$ defines a map $\hat{T}: \hat{\mathcal{D}} \rightarrow Y$ with the graph $\overline{\Gamma(T)}$. Since $\overline{\Gamma(T)}$ is a subspace, it is clear that \hat{T} is linear. Since $\overline{\Gamma(T)}$ is closed, \hat{T} is closed.

