EXAMINATION SOLUTIONS

FUNCTIONAL ANALYSIS

MATH 36202
(Paper Code MATH M6202)

May-June 2015, 2 hours and 30 minutes

1. (a) (5 marks, bookwork)

Using the linearity of the inner product,

$$
\|x+t y\|^{2}=\langle x+t y, x+t y\rangle=\|x\|^{2}+2 t\langle x, y\rangle+t^{2}\|y\|^{2} \geq 0 .
$$

Since this quadratic polynomial is always non-negative, its discriminant satisfies $4\langle x, y\rangle^{2}-$ $4\|x\|^{2}\|y\|^{2} \leq 0$. Hence, $|\langle x, y\rangle| \leq\|x\|\|y\|$, as required.
(b) (5 marks, similar to homework)

By the Cauchy-Schwarz inequality,

$$
\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| \leq\left|\left\langle x_{n}, y_{n}-y\right\rangle\right|+\left|\left\langle x_{n}-x, y\right\rangle\right| \leq\left\|x_{n}\right\|\left\|y_{n}-y\right\|+\left\|x_{n}-x\right\|\|y\| .
$$

We observe that $\left\|x_{n}\right\| \leq\|x\|+\left\|x_{n}-x\right\| \rightarrow\|x\|$, so that $\left\|x_{n}\right\|$ is bounded. Since $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|y_{n}-y\right\| \rightarrow 0$, this implies that the above expression converges to zero.
(c) (5 marks, unseen)

Observe that

$$
\|t x+(1-t) y\| \leq\|t x\|+\|(1-t) y\|=1,
$$

for any $0<t<1$.
Suppose in contrary that the equality holds for some t in $(0,1)$. Then

$$
1=\langle t x+(1-t) y, t x+(1-t) y\rangle=t^{2}+2 t(1-t)\langle x, y\rangle+(1-t)^{2},
$$

and we obtain $\langle x, y\rangle=1=\|x\|\|y\|$ - the equality case in the Cauchy-Schwarz inequality. This is only possible when the vectors x and y are linearly dependent, which gives a contradiction.
(d) (i) (2 marks, similar to homework)

If $u, v \in H_{0}$ and $a, b \in \mathbb{F}$, then $\left\langle a u+b v, x_{0}\right\rangle=a\left\langle u, x_{0}\right\rangle+b\left\langle v, x_{0}\right\rangle=0$. Hence, H_{0} is a subspace.
Suppose that $x_{n} \in H_{0}$ and $x_{n} \rightarrow x \in H$. Then

$$
\left|\left\langle x_{n}, x_{0}\right\rangle-\left\langle x_{n}, x_{0}\right\rangle\right|=\left|\left\langle x_{n}-x, x_{0}\right\rangle\right| \leq\left\|x_{n}-x\right\|\left\|x_{0}\right\| \rightarrow 0 .
$$

This implies that $\left\langle x, x_{0}\right\rangle=0$ as required.
(ii) (3 marks, similar to bookwork)

Given $y \in H$, we write $y=y_{0}+c x_{0}$ where $c=\frac{\left\langle y, x_{0}\right\rangle}{\left\|x_{0}\right\|^{2}}$ and $y_{0}=y-c x_{0}$. Then for $z \in H_{0}$, we have $y-z=\left(y_{0}-z\right)+c x_{0}$ where $\left(y_{0}-z\right) \perp c x_{0}$. Hence

$$
\|y-z\|^{2}=\left\|y_{0}-z\right\|^{2}+|c|^{2}\left\|x_{0}\right\|^{2} .
$$

This shows that $\|y-z\| \geq|c|\left\|x_{0}\right\|=\frac{\left|\left\langle y, x_{0}\right\rangle\right|}{\left\|x_{0}\right\|}$, where equality holds when $y=z$. Thus, the distance from y to H_{0} is $\frac{\left|\left\langle y, x_{0}\right\rangle\right|}{\left\|x_{0}\right\|}$.
(e) (i) (2 marks, bookwork)

Let $\left(e_{n}\right)$ be an orthonormal system in H. Then for every $x \in H$,

$$
\sum_{n}\left|\left\langle x, e_{n}\right\rangle\right|^{2} \leq\|x\|^{2}
$$

(ii) (3 marks, unseen)

Suppose that the Bessel inequality holds. Taking $x=e_{1}$, we deduce that

$$
\left|\left\langle e_{1}, e_{1}\right\rangle\right|^{2}+\sum_{n \geq 2}\left|\left\langle e_{1}, e_{n}\right\rangle\right|^{2} \leq\left\|e_{1}\right\|^{2}
$$

and this implies that $\left\langle e_{1}, e_{n}\right\rangle=0$ for all $n \geq 2$. The same argument shows that $\left\langle e_{k}, e_{l}\right\rangle=0$ for all $k \neq l$.
2. (a) (4 marks, bookwork)

Let $x^{(n)}=\left(x_{k}^{(n)}\right)_{k \geq 1}$ be a Cauchy sequence in ℓ^{∞}. This means that for every $\epsilon>0$, and $n, m \geq n_{0}(\epsilon)$,

$$
\left\|x^{(n)}-x^{(m)}\right\|_{\infty}=\sup _{k}\left|x_{k}^{(n)}-x_{k}^{(m)}\right|<\epsilon
$$

This, in particular, implies that for every k and $n, m \geq n_{0}(\epsilon)$,

$$
\left|x_{k}^{(n)}-x_{k}^{(m)}\right|<\epsilon
$$

In particular, each sequence $\left(x_{k}^{(n)}\right)_{n \geq 1}$ is a Cauchy sequence. Since \mathbb{R} is complete, $x_{k}^{(n)} \rightarrow x_{k}$ as $n \rightarrow \infty$ for some $x_{k} \in \mathbb{R}$. Passing to the limit as $m \rightarrow \infty$ in the above inequality, we deduce that for every k and $n \geq n_{0}(\epsilon)$,

$$
\left|x_{k}^{(n)}-x_{k}\right| \leq \epsilon
$$

This implies that for every $k,\left|x_{k}\right|<\epsilon+\left\|x^{(n)}\right\|_{\infty}$, and $x=\left(x_{k}\right)_{k \geq 1}$ belongs to ℓ^{∞}. The above inequality also implies that $\left\|x^{(n)}-x\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.
(b) (5 marks, similar to bookwork)

Let S be complete subspace of a Banach space X. Let $x_{n} \in S$ such that $x_{n} \rightarrow x \in X$. Then $\left\|x_{n}-x_{m}\right\| \leq\left\|x_{n}-x\right\|+\left\|x_{m}-x\right\| \rightarrow 0$ as $n, m \rightarrow \infty$, so that the sequence x_{n} is Cauchy. Hence, $x_{n} \rightarrow y$ for some $y \in S$. Since the limit is unique $x=y \in S$. This shows that S is closed.
Now suppose that S is a closed subspace of X, and x_{n} is a Cauchy sequence in S. Since X in Banach space, by completeness $x_{n} \rightarrow x$ for some $x \in X$, but since S is closed, $x \in S$. This proves that x_{n} converges in S, and S is complete.

(c) (i) (4 marks, similar to homework)

We consider $x=(1 / k)_{k \geq 1} \in \ell^{\infty}$ and $x^{(n)} \in X$ such that $x_{k}^{(n)}=1 / k$ for $k \leq n$ and $x_{k}^{(n)}=0$ for $k>n$. Then $\left\|x^{(n)}-x\right\| \leq 1 /(n+1) \rightarrow 0$. This shows that x belongs to the closure of X, and X is not closed (hence, not complete) in ℓ^{∞}.
(ii) (5 marks, similar to homework)

We claim that \bar{X} consists of sequences $x=\left(x_{k}\right)_{k \geq 1}$ such that $x_{k} \rightarrow 0$. Let x be such a sequence. Then for every $\epsilon>0$ and $n \geq n_{0}(\epsilon)$, we have $\left|x_{k}\right|<\epsilon$. We take $x_{k}^{(n)}=x_{k}$ for $k \leq n_{0}(\epsilon)$ and $x_{k}^{(n)}=0$ for $k>n$. Then $\left\|x^{(n)}-x\right\|_{\infty}<\epsilon$. This proves that $x \in \overline{\bar{X}}$. Conversely, suppose that $x^{(n)} \rightarrow x$ for some $x^{(n)} \in X$. Then for every $\epsilon>0$ and sufficiently large $n,\left\|x^{(n)}-x\right\|_{\infty}<\epsilon$. Since $x^{(n)} \in X$, for all sufficiently large $k,\left|x_{k}^{(n)}-x_{k}\right|=\left|x_{k}\right|$. This implies that for all sufficiently large $k,\left|x_{k}\right|<\epsilon$. Hence, $x_{k} \rightarrow 0$, as claimed.
(iii) (4 marks, similar to homework)

Consider the operator $S: X \rightarrow X$ defined by $\left(x_{n}\right) \rightarrow\left(2^{n} x_{n}\right)$. Then $T S=S T=I$. Take $x^{(k)} \in X$ such that $x_{n}^{(k)}=1$ for $n \leq k$ and $x_{n}^{(k)}=0$ for $n>k$. Then $\left\|x^{(k)}\right\|_{\infty}=1$ and $\left\|S x^{(k)}\right\|_{\infty}=2^{k}$. Since $\|S\|=\sup \left\{\|S x\|_{\infty}:\|x\|_{\infty}=1\right\}$, this shows that $\|S\|=\infty$.
(d) (3 marks, bookwork)

The Bounded Inverse Theorem says that if $T: X \rightarrow X$ is a bounded bijective linear map where X is a Banach space, then the inverse map T^{-1} is also bounded. This theorem does not apply to (c)(iii) because X in (c) is not not complete as shown in (c)(i) so it is not a Banach space.

3. (a) (2 marks, bookwork)

The dual space X^{*} is the space of bounded linear maps $f: X \rightarrow \mathbb{C}$.
(b) (4 marks, bookwork)

We claim that $\left(\ell^{1}\right)^{*} \simeq \ell^{\infty}$. Let $a=\left(a_{k}\right)_{k \geq 1} \in \ell^{\infty}$. We defined $f_{a}: \ell^{1} \rightarrow \mathbb{C}$ by $f_{a}(x)=\sum_{k \geq 1} a_{k} x_{k}$. It is easy to check that \bar{f}_{a} is linear. Also

$$
\left|f_{a}(x)\right| \leq \sum_{k \geq 1}\left|a_{k} x_{k}\right| \leq\|a\|_{\infty}\|x\|_{1}
$$

Hence, $f_{a} \in X^{*}$. Now take any $f \in X^{*}$. We denote by $e_{k} \in \ell^{1}$ the vector whose k 's coordinate is 1 and the other coordinates are 0 . Let $a_{k}=f\left(e_{k}\right)$. Then $\left|a_{k}\right| \leq$ $\|f\|\left\|e_{k}\right\|_{1}=\|f\|$, so that $a=\left(a_{k}\right)_{k \geq 1} \in \ell^{\infty}$. By linearity $f(x)=f_{a}(x)$ for all x in the subspace X of ℓ^{1} consisting of x that have only finitely many non-zero coordinates. This subspace is dense in ℓ^{1}. Hence, by continuity $f(x)=f_{a}(x)$ for all $x \in \ell^{\infty}$.
(c) (3 marks, similar to homework)

Since $\sum_{n \geq 1}\left\|x_{n}\right\|<\infty$, for every $\epsilon>0$ and $m \geq m_{0}(\epsilon), \sum_{n \geq m}\left\|x_{n}\right\|<\epsilon$. Consider the sequence $s_{m}=\sum_{n=1}^{m} x_{n}$. For $m_{1}<m_{2}$ we have $\left\|s_{m_{1}}-s_{m_{2}}\right\| \leq \sum_{n=m_{1}+1}^{m_{2}}\left\|x_{n}\right\|$. Hence, if $m_{1} \geq m_{0}(\epsilon)$, then $\left\|s_{m_{1}}-s_{m_{2}}\right\|<\epsilon$. This shows that the sequence s_{m} is Cauchy. Since X is a Banach space, this sequence must converge.
(d) (3 marks, similar to homework)

We apply the Hahn-Banach theorem. Let V be the subspace of X spanned by x. We define $f \in X^{*}$ by $f(a x)=a$. Note that $|f(a x)|=|a|=\|a x\|$. By the Hahn-Banach theorem f can be expended to a linear map $X \rightarrow \mathbb{C}$ such that $|f(x)| \leq\|x\|$ for all $x \in X$. In particular, $|f| \leq 1$ on B.
(e) (5 marks, unseen)

Each element x_{n} defines a linear map $L_{n}: X^{*} \rightarrow \mathbb{C}$ by $L_{n}(f)=f\left(x_{n}\right)$. Since the sequence $f\left(x_{n}\right)$ is Cauchy, it is bounded. Hence, there exists $c=c(f)>0$ such that $\left|L_{n}(f)\right| \leq c$ for all n. We note that X^{*} is also a Banach space. By the Uniform Boundedness Theorem, $\sup _{n}\left\|L_{n}\right\|<\infty$. Finally,

$$
\left\|L_{n}\right\|=\sup \left\{\left|L_{n}(f)\right|:\|f\|=1\right\}=\sup \left\{\left|f\left(x_{n}\right)\right|:\|f\|=1\right\}=\left\|x_{n}\right\|
$$

This proves that the sequence x_{n} is bounded.
(f) (i) (3 marks, bookwork)
$A_{n} \rightarrow A$ in norm topology if $\left\|A_{n}-A\right\| \rightarrow 0 . A_{n} \rightarrow A$ in strong topology if $\left\|A_{n} x-A x\right\| \rightarrow 0$ for every $x \in X . A_{n} \rightarrow A$ in weak topology if $f\left(A_{n} x-A x\right) \rightarrow 0$ for every $x \in X$ and $f \in X^{*}$.
(ii) (5 marks, unseen)

For $k>n, S^{n} e_{k}=e_{n-k}$, so that for $k>n_{2}>n_{1}$,

$$
\left\|\left(S^{n_{1}}-S^{n_{2}}\right) e_{k}\right\|_{1}=\left\|e_{k-n_{1}}-e_{k-n_{2}}\right\|_{1}=2
$$

Hence, $\left\|S^{n_{1}}-S^{n_{2}}\right\| \geq 2$. This shows that S^{n} is not a Cauchy sequence, and it cannot converge in the norm topology.
Take $x \in \ell^{1}$. For every $\epsilon>0$, there exists x_{0} that has only finitely many nonzero coordinates such that $\left\|x-x_{0}\right\|<\epsilon$. Then for all sufficiently large $n, S^{n} x_{0}=0$, and $\left\|S^{n} x\right\|_{1} \leq\left\|S^{n} x_{0}\right\|_{1}+\left\|S^{n}\right\|\left\|x-x_{0}\right\|_{1} \leq\left\|x-x_{0}\right\|_{1}<\epsilon$. This proves that $S^{n} \rightarrow 0$ in strong topology.
Alternatively, to prove that S^{n} does not converge in norm topology, one notes that $\left\|S^{n}\right\|=1$. If $S^{n} \rightarrow T$ for some operator T, then $\|T\|=1$, but $T=0$ because $S^{n} \rightarrow 0$ in weak topology. This gives a contradiction.
4. (a) (2 marks, bookwork)

Every bounded linear map $f: H \rightarrow \mathbb{C}$ is of the form $f(x)=\langle x, y\rangle$ for a uniquely defined $y \in H$. Moreover, $\|f\|=\|y\|$.
(b) (2 marks, bookwork)
$x_{n} \rightarrow x$ weakly if $\left\langle x_{n}-x, z\right\rangle \rightarrow 0$ for every $z \in H$.
(c) (3 marks, unseen)
$\left\langle x_{n}-y, w\right\rangle \rightarrow 0$ and $\left\langle x_{n}-z, w\right\rangle \rightarrow 0$ for every $w \in H$. Then by subtracting we obtain $\langle y-z, w\rangle=0$. Since this holds for all $w \in H$, this implies that $y=z$.
(d) (i) (4 marks, unseen)

We need to show that for every $f \in H^{*}, f\left(A x_{n}-A x\right) \rightarrow 0$. The map $g(x)=f(A x)$ is a bounded linear map. Hence, $g\left(x_{n}-x\right) \rightarrow 0$ as required.
(ii) (5 marks, unseen)

Suppose that the operator A is unbounded. Then there a sequence of unit vectors x_{n} such $\left\|A x_{n}\right\| \geq n^{2}$. Let $y_{n}=x_{n} / n$. Then $\left\|y_{n}\right\| \rightarrow 0$ and $\left\|A y_{n}\right\| \rightarrow \infty$. By the assumption $A y_{n} \rightarrow 0$ weakly. In particular, the sequence $\left\langle A y_{n}, y\right\rangle$ is bounded for every $y \in H$. Let $L_{n}(y)=\overline{\left\langle A y_{n}, y\right\rangle}$. Note that $L_{n} \in H^{*}$ and $\left\|L_{n}\right\|=\left\|A y_{n}\right\|$. By the Uniform Boundedness Principle, $\sup _{n}\left\|A y_{n}\right\|<\infty$. This gives a contradiction.

(e) (4 marks, homework)

Recall that $(S T)^{*}=T^{*} S^{*}$. We have $A A^{-1}=A^{-1} A=I$ and hence $\left(A^{-1}\right)^{*} A^{*}=$ $A^{*}\left(A^{-1}\right)^{*}=I$. This proves that $\left(A^{-1}\right)^{*}$ is the inverse of A^{*}. Since $\left\|\left(A^{-1}\right)^{*}\right\| \leq\left\|A^{-1}\right\|$, the inverse is bounded.

(f) (5 marks, homework)

For $f \in H,\left\|A_{\phi} f\right\|_{2} \leq\|\phi\|_{\infty}\|f\|_{2}$. Hence, $\left\|A_{\phi}\right\|_{2} \leq\|\phi\|_{\infty}$. We claim that the equality holds. Let $m=\|\phi\|_{\infty}$. Since ϕ is continuous, there exists $x_{0} \in[0,1]$ such $\left|\phi\left(x_{0}\right)\right|=m$. For every $\epsilon>0$, there exists $\delta>0$ such that $\left|\phi\left(x_{0}\right)-\phi(x)\right|<\epsilon$ for all $x \in B_{\delta}\left(x_{0}\right)$. We take $f \in H$ such that $\operatorname{supp}(f) \subset B_{\delta}\left(x_{0}\right)$. Then

$$
\left\|A_{\phi} f\right\|_{2} \geq\left\|A_{m} f\right\|_{2}-\left\|\left(A_{\phi}-A_{m}\right) f\right\|_{2} \geq m\|f\|_{2}-\epsilon\|f\|_{2}
$$

This shows that $\left\|A_{\phi}\right\|_{2} \geq m-\epsilon$ for every $\epsilon>0$. Hence, $\left\|A_{\phi}\right\|_{2}=m$. For $f_{1}, f_{2} \in H,\left\langle A_{\phi} f_{1}, f_{2}\right\rangle=\left\langle\phi f_{1}, f_{2}\right\rangle=\left\langle f_{1}, \bar{\phi} f_{2}\right\rangle=\left\langle f_{1}, A_{\bar{\phi}} f_{2}\right\rangle$. Hence, $A_{\phi}^{*}=A_{\bar{\phi}}$.
5. (a) (3 marks, bookwork)

A subset is meager if it is a countable union of sets whose closure has empty interior. The Baire Category Theorem states that a complete metric space is not meager.
(b) (3 marks, similar to homework)

Consider the linear maps $L_{n}(f)=\int_{0}^{1} \phi_{n}(x) f(x) d x$. We claim that $\left\|L_{n}\right\|=\left\|\phi_{n}\right\|_{2}$. Indeed, $\left|L_{n}(f)\right| \leq\left\|\phi_{n}\right\|_{2}\|f\|_{2}$, so that $\left\|L_{n}\right\| \leq\left\|\phi_{n}\right\|_{2}$. Taking $f=\bar{\phi}_{n},\left|L_{n}(f)\right|=$ $\|\phi\|_{2}\|f\|_{2}$, so that we deduce that $\left\|L_{n}\right\| \geq\left\|\phi_{n}\right\|_{2}$ which proves the claim. The space $L^{2}([0,1])$ is complete, and we can apply the Uniform Boundedness Theorem to the linear maps. Suppose that for every $f \in L^{2}([0,1])$, the sequence $L_{n}(f)$ is bounded. Then by the Uniform Boundedness Theorem, the norms $\left\|L_{n}\right\|$ are also uniformly bounded. This contradicts our assumption.
(c) (i) (3 marks, bookwork and homework)

Let $x=\left(x_{k}\right)_{k \geq 1} \in \ell^{1}$. This means that $\sum_{k \geq 1}\left|x_{k}\right|<\infty$. Then $\left|x_{k}\right| \rightarrow 0$; in particular, $\left|x_{k}\right|^{2} \leq\left|x_{k}\right|$ for all sufficiently large k. Hence, it follows that that $\sum_{k \geq 1}\left|x_{k}\right|^{2}<\infty$. This shows that $\ell^{1} \subset \ell^{2}$.
Take $x=\left(x_{k}\right)_{k \geq 1} \in \ell^{2}$. Since $\sum_{k \geq 1}\left|x_{k}\right|^{2}<\infty$, for all $\epsilon>0$ and $n \geq n_{0}(\epsilon)$ $\sum_{k \geq n+1}\left|x_{k}\right|^{2}<\epsilon$. Take $y=\left(y_{k}\right)_{k \geq 1}$ such that $y_{k}=x_{k}$ for $k \leq n_{0}(\epsilon)$ and $y_{k}=0$ otherwise. Clearly, $y_{k} \in \ell^{1}$ and $\|x-y\|_{2}^{2}<\epsilon$. This shows that x can be approximated by elements from ℓ^{1}.
(ii) (4 marks, unseen)

Suppose that $x^{(n)}=\left(x_{k}^{(n)}\right)_{k \geq 1} \in B_{R}$ and $x^{(n)} \rightarrow x$ in ℓ^{2}. This implies that for every $k, x_{k}^{(n)} \rightarrow x_{k}$ as $n \rightarrow \infty$. We have

$$
\|x\|_{1}=\lim _{N \rightarrow \infty} \sum_{k=1}^{N}\left|x_{k}\right|=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \lim _{n \rightarrow \infty}\left|x_{k}^{(n)}\right|=\lim _{N \rightarrow \infty} \lim _{n \rightarrow \infty} \sum_{k=1}^{N}\left|x_{k}^{(n)}\right| \leq R .
$$

(iii) (4 marks, unseen)

Suppose that ℓ^{1} has non-empty interior in ℓ^{2}, i.e., there exists $x \in \ell^{1}$ and $\epsilon>0$ such that $x+y \in \ell^{1}$ for every y with $\|y\|_{2}<\epsilon$. Then for every $z \in \ell^{2}, x+\frac{\epsilon}{2\|z\|_{2}} z \in$ ℓ^{1}. Since $x \in \ell^{1}$, this implies that $z \in \ell^{1}$. We have shown that $\ell^{1}=\ell^{2}$, but this is not true. For instance, $x=(1 / k)_{k \geq 1}$ belongs to ℓ^{2}, but not to ℓ^{1}. This contradiction implies that ℓ^{1} has empty interior in ℓ^{2}.
Now $\ell^{1}=\cup_{R=1}^{\infty} B_{R}$ where each B_{R} is closed and has empty interior, so that ℓ^{1} is meager in ℓ^{2}.
(d) (i) (4 marks, similar to homework)

We write $f_{n}(x)=\left(e^{2 \pi i n x}+e^{-2 \pi i n x}\right) / 2$. By orthogonality for $n \neq m$,

$$
\left\|f_{n}-f_{m}\right\|_{2}^{2}=\frac{1}{4}\left\|e^{2 \pi i n x}+e^{-2 \pi i n x}-e^{2 \pi i m x}-e^{-2 \pi i m x}\right\|_{2}^{2}=1
$$

This implies that f_{n} is not a Cauchy sequence in H, so that it doesn't converge.
(ii) (4 marks, similar to homework)

We use that the space of trigonometric polynomials is dense in H. For every $\epsilon>0$, there exists a trigonometric polynomial such that $\|g-p\|_{2}<\epsilon$. It follows from orthogonality that for sufficiently large $n,\left\langle f_{n}, p\right\rangle=0$. We obtain

$$
\left|\left\langle f_{n}, g\right\rangle\right| \leq\left|\left\langle f_{n}, p\right\rangle\right|+\left|\left\langle f_{n}, g-p\right\rangle\right| \leq\left\|f_{n}\right\|_{2}\|g-p\|_{2}<\epsilon / \sqrt{2}
$$

This proves that $\left\langle f_{n}, g\right\rangle \rightarrow 0$.

End of solutions.

