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(a) (5 marks, bookwork)
Using the linearity of the inner product,

lz + tyl* = (z + ty, & + ty) = [|l=[|* + 2t (z,y) + *[}y||* > 0.
Since this quadratic polynomial is always non-negative, its discriminant satisfies 4 (z, y>2—

A|z[*[|ly[|* < 0. Hence, | (z,y) | < [[z]|[|yl|, as required.

(b) (5 marks, similar to homework)
By the Cauchy-Schwarz inequality,

| @) = (& y) | <T@y =) |+ [ @ = 2,9) | < Mlzallllyn =yl + llzn — 2]l {lyl.

We observe that ||z,| < ||z| + ||z, — z|| — [|z||, so that ||z,| is bounded. Since
|zn, — z|| = 0 and ||y, — y|| — 0, this implies that the above expression converges to
Z€ro.

(c¢) (5 marks, unseen)
Observe that
[tz + (1 = t)yl| < ltz] + |1 —)yl| =1,
for any 0 <t < 1.
Suppose in contrary that the equality holds for some ¢ in (0, 1). Then

1= (to+ (1 —t)y,to+ (1 —t)y) =t>+2t(1 —t) (x,9) + (1 — )2,

and we obtain (x,y) = 1 = ||z||||ly|| — the equality case in the Cauchy—Schwarz
inequality. This is only possible when the vectors x and y are linearly dependent,
which gives a contradiction.

(d) (i) (2 marks, similar to homework)
If u,v € Hy and a,b € F, then (au + bv, z) = a (u,x0) + b (v, z9) = 0. Hence, Hy
is a subspace.
Suppose that x,, € Hy and x, — x € H. Then

| (Zns w0) = (ns 20) | = | {20 — 2, 20) | < |0 — 2[|20]] = 0.

This implies that (x,z0) = 0 as required.
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(ii) (3 marks, similar to bookwork)

<y7$0>
llzoll?
z € Hy, we have y — z = (yo — z) + cxo where (yo — 2) L cxy. Hence

Given y € H, we write y = yo + cxg where ¢ = and yp = y — cxg. Then for

ly = 21* = llyo — 2[I* + |ef*[|zo]|*.

This shows that ||y — z|| > |c[||zo]| = {222 where equality holds when y = z.

l[zoll

Thus, the distance from y to Hy is [{y,z0)|

[E
(i) (2 marks, bookwork)
Let (e,) be an orthonormal system in H. Then for every x € H,

D e P < Jlz)”
n

(ii) (3 marks, unseen)
Suppose that the Bessel inequality holds. Taking x = e;, we deduce that

[even) P+ [{eren) P < le

n>2

and this implies that (e;,e,) = 0 for all n > 2. The same argument shows that
(er,e) =0 for all k # L.

(4 marks, bookwork)
Let (™ = (mén))kzl be a Cauchy sequence in ¢*°. This means that for every ¢ > 0,
and n, m > ny(e),
|2 — 20| o = sup |z — 2™ | < .
k

This, in particular, implies that for every k and n,m > ng(e),

|m§€n) - :E](Cm)| < e

In particular, each sequence (93,(6") Jn>1 is a Cauchy sequence. Since R is complete,

:r,i") — x1 as n — oo for some x;, € R. Passing to the limit as m — oo in the above
inequality, we deduce that for every k and n > ng(e),

2 — 2 < e

This implies that for every &, |zx| < e+ ||z ||», and @ = (x4)1>1 belongs to (. The
above inequality also implies that ||z — 2|l — 0 as n — co.

(5 marks, similar to bookwork)

Let S be complete subspace of a Banach space X. Let z,, € S such that z,, - = € X.
Then ||z, — zp| < ||z, — x| + ||2m — z|| = 0 as n,m — oo, so that the sequence z,,
is Cauchy. Hence, x,, — y for some y € S. Since the limit is unique x =y € S. This
shows that S is closed.

Now suppose that S is a closed subspace of X, and x,, is a Cauchy sequence in S.
Since X in Banach space, by completeness x,, — = for some x € X, but since S is
closed, x € S. This proves that z, converges in S, and S is complete.

(i) (4 marks, similar to homework)
We consider 2 = (1/k)g>1 € £%° and 2™ € X such that l‘](gn) = 1/k for k < n and

:c,g") =0 for k > n. Then [|2™ —z|| < 1/(n+ 1) — 0. This shows that = belongs
to the closure of X, and X is not closed (hence, not complete) in £°°.
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3. (a)

(b)

(e)

(ii) (5 marks, similar to homework)
We claim that X consists of sequences x = (x3)g>1 such that 2 — 0. Let x be
such a sequence. Then for every € > 0 and n > ng(€), we have |zx| < e. We take
x,(cn) = xy for k < ng(e) and x,ﬁn) =0 for k > n. Then ||2™ — x|, < e. This
proves that z € X. Conversely, suppose that (™ — z for some (™ € X. Then
for every € > 0 and sufficiently large n, ||z — x|l < €. Since 2™ € X, for all
sufficiently large k, |a:§€n) — x| = |zx|. This implies that for all sufficiently large
k, |xg| < e. Hence, x; — 0, as claimed.

(iii) (4 marks, similar to homework)
Consider the operator S : X — X defined by (x,,) — (2"z,). Then T'S = ST = I.
Take z®) € X such that x%k) = 1forn < k and :U,(f) = 0 for n > k. Then
2] = 1 and [|Sz®|| = 2%, Since ||S]| = sup{[|S7||e : ||7]lec = 1}, this
shows that S]] = oo.

(3 marks, bookwork)

The Bounded Inverse Theorem says that if 7': X — X is a bounded bijective linear

map where X is a Banach space, then the inverse map 7! is also bounded. This

theorem does not apply to (¢)(iii) because X in (c¢) is not not complete as shown in

(c)(i) so it is not a Banach space.

(2 marks, bookwork)
The dual space X* is the space of bounded linear maps f : X — C.

(4 marks, bookwork)
We claim that (¢')* ~ ¢*. Let a = (ar)i>1 € (*. We defined f, : ¢! — C by
fo(z) = Zkzl apxr. It is easy to check that f, is linear. Also

[fa@)] < D lanax] < llallcllz])s-

k>1

Hence, f, € X*. Now take any f € X*. We denote by e, € ¢! the vector whose
k’s coordinate is 1 and the other coordinates are 0. Let ay = f(eg). Then |ax| <
I flllexlls = 11 f]l, so that a = (ag)k>1 € €>°. By linearity f(z) = f,(z) for all z in the
subspace X of ¢! consisting of x that have only finitely many non-zero coordinates.
This subspace is dense in ¢!. Hence, by continuity f(z) = f,(x) for all x € £*.

(3 marks, similar to homework)

Since Y, o [|Za]] < 00, for every € > 0 and m > mg(e), >, <, |zn|| < €. Consider the
sequence S, =y | . For my < my we have ||y, — sp,|[ < D202 L ||, ]|. Hence,
if my; > mg(e), then ||s;,;, — Sm,|| < €. This shows that the sequence s, is Cauchy.
Since X is a Banach space, this sequence must converge.

(3 marks, similar to homework)

We apply the Hahn-Banach theorem. Let V' be the subspace of X spanned by z. We
define f € X* by f(ax) = a. Note that |f(az)| = |a| = ||az||. By the Hahn-Banach
theorem f can be expended to a linear map X — C such that |f(z)| < ||z|| for all
z € X. In particular, |f| <1 on B.

(5 marks, unseen)

Each element x,, defines a linear map L, : X* — C by L,(f) = f(x,). Since the
sequence f(x,) is Cauchy, it is bounded. Hence, there exists ¢ = ¢(f) > 0 such that
|Ln(f)| < ¢ for all n. We note that X* is also a Banach space. By the Uniform
Boundedness Theorem, sup,, || L, || < co. Finally,

[Lnll = sup{[La(F)] = £l = 1} = sup{|f(zn)] = (] = 1} = [lznll
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This proves that the sequence x,, is bounded.

(f) (i) (3 marks, bookwork)
A, — A in norm topology if ||A, — A|| = 0. A, — A in strong topology if
|Apx — Az|| — 0 for every x € X. A, — A in weak topology if f(A,z — Az) — 0
for every x € X and f € X*.

(ii) (5 marks, unseen)
For k > n, S"ex = e,_k, so that for k > ny > nyq,

15" = §™)erlly = [lex—n, — er—nalls = 2.

Hence, ||S™ — S™|| > 2. This shows that S™ is not a Cauchy sequence, and it
cannot converge in the norm topology.

Take x € ¢*. For every € > 0, there exists xy that has only finitely many nonzero
coordinates such that ||z — zo|| < e. Then for all sufficiently large n, S"xy = 0,
and ||S™xz|ly < ||S™xo|l1+[|S™||||x —xo|l1 < ||z —20||1 < e. This proves that S™ — 0
in strong topology.

Alternatively, to prove that S™ does not converge in norm topology, one notes
that ||S™|| = 1. If S™ — T for some operator T, then ||T'|| = 1, but 7' = 0 because
S™ — 0 in weak topology. This gives a contradiction.

(a) (2 marks, bookwork)
Every bounded linear map f : H — C is of the form f(z) = (z,y) for a uniquely
defined y € H. Moreover, ||f|| = |ly]|-

(b) (2 marks, bookwork)
x, — x weakly if (x,, — z,2z) — 0 for every z € H.

(¢) (3 marks, unseen)
(x, —y,w) — 0 and (z, — z,w) — 0 for every w € H. Then by subtracting we obtain
(y — z,w) = 0. Since this holds for all w € H, this implies that y = z.

(d) (i) (4 marks, unseen)
We need to show that for every f € H*, f(Ax,—Az) — 0. The map g(x) = f(Axz)
is a bounded linear map. Hence, g(x, — x) — 0 as required.

(ii) (5 marks, unseen)
Suppose that the operator A is unbounded. Then there a sequence of unit vectors
r, such ||Az,|| > n® Let y, = x,/n. Then |ly,|| — 0 and ||Ay,|| — co. By the
assumption Ay, — 0 weakly. In particular, the sequence (Ay,,y) is bounded for

every y € H. Let L,(y) = (Ay,,y). Note that L, € H* and ||L,| = ||Ay.|. By
the Uniform Boundedness Principle, sup,, ||Ay,|| < oo. This gives a contradiction.

(e) (4 marks, homework)
Recall that (ST)* = T*S*. We have AA™! = A™'A = [ and hence (A71)*A* =
A*(A~1)* = I. This proves that (A7')* is the inverse of A*. Since [[(A™1)*|| < ||A™!],
the inverse is bounded.

(f) (5 marks, homework)
For f € H, ||[Asfll2 < ||@llooll fll2- Hence, ||Apll2 < [|@]loo- We claim that the equality
holds. Let m = ||¢||. Since ¢ is continuous, there exists x¢ € [0, 1] such |¢(zo)| = m.
For every € > 0, there exists ¢ > 0 such that |¢(xg) — ¢(z)| < € for all © € Bs(zg). We
take f € H such that supp(f) C Bs(zo). Then

[Agfllz = [ Amfllz = 1(Ag = Am) fll2 = ml[ fll2 = €[l F1]2-
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This shows that ||Ag||2 > m — € for every € > 0. Hence, |4yl =m
For f17f2 € H7 <A¢f17f2> = <¢f17f2> = <f17§5f2> = <f17Aq§f2> Henceu AZ = A(ZS

(3 marks, bookwork)
A subset is meager if it is a countable union of sets whose closure has empty interior.
The Baire Category Theorem states that a complete metric space is not meager.

(3 marks, similar to homework)

Consider the linear maps L,,( f én(z) f(x)dx. We claim that ||L,| = ||¢nl2-
incod 1La()] < Tonl s, o G Tl & Mol Tating £ = e Tl
ol f]]2, so that we deduce that ||L,|| > ||¢n||e which proves the claim. The space
L*(]0,1]) is complete, and we can apply the Uniform Boundedness Theorem to the
linear maps. Suppose that for every f € L?([0,1]), the sequence L,(f) is bounded.
Then by the Uniform Boundedness Theorem, the norms ||L,| are also uniformly
bounded. This contradicts our assumption.

(i) (3 marks, bookwork and homework)
Let © = (z1)r>1 € £'. This means that >, |zx| < co. Then |zx| — 0;
particular, |r;|? < |x;| for all sufficiently large k. Hence, it follows that that
> psq |2k]? < oo. This shows that ¢ C (2
Take = (zx)=1 € €% Since Y, |zx> < oo, for all € > 0 and n > ng(e)
Y ionst [T|? < €. Take y = (yr)r>1 such that y, = x5 for k < ng(e) and
yr = 0 otherwise. Clearly, y, € ¢! and ||z — y||3 < e. This shows that = can be
approximated by elements from ¢*.

(ii) (4 marks, unseen)

Suppose that z(™ = (x,in))kzl € B and 2™ — x in ¢2. This implies that for
(n)

every k, x;’ — xj as n — 0o. We have
N N N
|z]y = lim Z]a:k] = lim Z lim \xk | = lim lim Z\x;")] < R.
N=roo i — N—r00 £ n—00 N =00 n—00 £—

(iii) (4 marks, unseen)
Suppose that ¢* has non-empty interior in ¢2, i.e., there exists x € ¢! and ¢ > 0
such that x +y € ¢! for every y with [Jy[lo < e. Then for every z € (%, x + 2||ZH z €
¢'. Since z € (', this implies that z € ¢!. We have shown that El = (%, but
this is not true. For instance, x = (1/k)z>1 belongs to %, but not to ¢!. This
contradiction implies that ¢! has empty interior in ¢2.
Now ¢! = U, Br where each Bp is closed and has empty interior, so that ¢! is
meager in /2.

(i) (4 marks, similar to homework)

We write f,(z) = (e*™"* + =27 /2. By orthogonality for n # m,

||fn me2 H 2minx 4 e—27rinx . e27rimm . e—27rimw||§ - 1.

This implies that f, is not a Cauchy sequence in H, so that it doesn’t converge.
(ii) (4 marks, similar to homework)

We use that the space of trigonometric polynomials is dense in H. For every

e > 0, there exists a trigonometric polynomial such that ||g — p|ls < €. It follows

from orthogonality that for sufficiently large n, (f,,p) = 0. We obtain

[ {fus 90 | S T D) [+ 1 Fns g =) 1 < I full2llg = pllo < ¢/ V2.



This proves that (f,,g) — 0.

End of solutions.



