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1. (a) (5 marks, bookwork)
Using the linearity of the inner product,

‖x+ ty‖2 = 〈x+ ty, x+ ty〉 = ‖x‖2 + 2t 〈x, y〉+ t2‖y‖2 ≥ 0.

Since this quadratic polynomial is always non-negative, its discriminant satisfies 4 〈x, y〉2−
4‖x‖2‖y‖2 ≤ 0. Hence, | 〈x, y〉 | ≤ ‖x‖ ‖y‖, as required.

(b) (5 marks, similar to homework)
By the Cauchy-Schwarz inequality,

| 〈xn, yn〉 − 〈x, y〉 | ≤ | 〈xn, yn − y〉 |+ | 〈xn − x, y〉 | ≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖.

We observe that ‖xn‖ ≤ ‖x‖ + ‖xn − x‖ → ‖x‖, so that ‖xn‖ is bounded. Since
‖xn − x‖ → 0 and ‖yn − y‖ → 0, this implies that the above expression converges to
zero.

(c) (5 marks, unseen)
Observe that

‖tx+ (1− t)y‖ ≤ ‖tx‖+ ‖(1− t)y‖ = 1,

for any 0 < t < 1.

Suppose in contrary that the equality holds for some t in (0, 1). Then

1 = 〈tx+ (1− t)y, tx+ (1− t)y〉 = t2 + 2t(1− t) 〈x, y〉+ (1− t)2,

and we obtain 〈x, y〉 = 1 = ‖x‖‖y‖ — the equality case in the Cauchy–Schwarz
inequality. This is only possible when the vectors x and y are linearly dependent,
which gives a contradiction.

(d) (i) (2 marks, similar to homework)
If u, v ∈ H0 and a, b ∈ F, then 〈au+ bv, x0〉 = a 〈u, x0〉+ b 〈v, x0〉 = 0. Hence, H0

is a subspace.
Suppose that xn ∈ H0 and xn → x ∈ H. Then

| 〈xn, x0〉 − 〈xn, x0〉 | = | 〈xn − x, x0〉 | ≤ ‖xn − x‖‖x0‖ → 0.

This implies that 〈x, x0〉 = 0 as required.
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(ii) (3 marks, similar to bookwork)

Given y ∈ H, we write y = y0 + cx0 where c = 〈y,x0〉
‖x0‖2 and y0 = y − cx0. Then for

z ∈ H0, we have y − z = (y0 − z) + cx0 where (y0 − z) ⊥ cx0. Hence

‖y − z‖2 = ‖y0 − z‖2 + |c|2‖x0‖2.

This shows that ‖y − z‖ ≥ |c|‖x0‖ = |〈y,x0〉|
‖x0‖ , where equality holds when y = z.

Thus, the distance from y to H0 is |〈y,x0〉|‖x0‖ .

(e) (i) (2 marks, bookwork)
Let (en) be an orthonormal system in H. Then for every x ∈ H,∑

n

| 〈x, en〉 |2 ≤ ‖x‖2.

(ii) (3 marks, unseen)
Suppose that the Bessel inequality holds. Taking x = e1, we deduce that

| 〈e1, e1〉 |2 +
∑
n≥2

| 〈e1, en〉 |2 ≤ ‖e1‖2

and this implies that 〈e1, en〉 = 0 for all n ≥ 2. The same argument shows that
〈ek, el〉 = 0 for all k 6= l.

2. (a) (4 marks, bookwork)

Let x(n) = (x
(n)
k )k≥1 be a Cauchy sequence in `∞. This means that for every ε > 0,

and n,m ≥ n0(ε),

‖x(n) − x(m)‖∞ = sup
k
|x(n)
k − x

(m)
k | < ε.

This, in particular, implies that for every k and n,m ≥ n0(ε),

|x(n)
k − x

(m)
k | < ε.

In particular, each sequence (x
(n)
k )n≥1 is a Cauchy sequence. Since R is complete,

x
(n)
k → xk as n → ∞ for some xk ∈ R. Passing to the limit as m → ∞ in the above

inequality, we deduce that for every k and n ≥ n0(ε),

|x(n)
k − xk| ≤ ε.

This implies that for every k, |xk| < ε+ ‖x(n)‖∞, and x = (xk)k≥1 belongs to `∞. The
above inequality also implies that ‖x(n) − x‖∞ → 0 as n→∞.

(b) (5 marks, similar to bookwork)
Let S be complete subspace of a Banach space X. Let xn ∈ S such that xn → x ∈ X.
Then ‖xn − xm‖ ≤ ‖xn − x‖ + ‖xm − x‖ → 0 as n,m→∞, so that the sequence xn
is Cauchy. Hence, xn → y for some y ∈ S. Since the limit is unique x = y ∈ S. This
shows that S is closed.

Now suppose that S is a closed subspace of X, and xn is a Cauchy sequence in S.
Since X in Banach space, by completeness xn → x for some x ∈ X, but since S is
closed, x ∈ S. This proves that xn converges in S, and S is complete.

(c) (i) (4 marks, similar to homework)

We consider x = (1/k)k≥1 ∈ `∞ and x(n) ∈ X such that x
(n)
k = 1/k for k ≤ n and

x
(n)
k = 0 for k > n. Then ‖x(n) − x‖ ≤ 1/(n+ 1)→ 0. This shows that x belongs

to the closure of X, and X is not closed (hence, not complete) in `∞.
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(ii) (5 marks, similar to homework)
We claim that X̄ consists of sequences x = (xk)k≥1 such that xk → 0. Let x be
such a sequence. Then for every ε > 0 and n ≥ n0(ε), we have |xk| < ε. We take

x
(n)
k = xk for k ≤ n0(ε) and x

(n)
k = 0 for k > n. Then ‖x(n) − x‖∞ < ε. This

proves that x ∈ X̄. Conversely, suppose that x(n) → x for some x(n) ∈ X. Then
for every ε > 0 and sufficiently large n, ‖x(n) − x‖∞ < ε. Since x(n) ∈ X, for all

sufficiently large k, |x(n)
k − xk| = |xk|. This implies that for all sufficiently large

k, |xk| < ε. Hence, xk → 0, as claimed.

(iii) (4 marks, similar to homework)
Consider the operator S : X → X defined by (xn)→ (2nxn). Then TS = ST = I.

Take x(k) ∈ X such that x
(k)
n = 1 for n ≤ k and x

(k)
n = 0 for n > k. Then

‖x(k)‖∞ = 1 and ‖Sx(k)‖∞ = 2k. Since ‖S‖ = sup{‖Sx‖∞ : ‖x‖∞ = 1}, this
shows that ‖S‖ =∞.

(d) (3 marks, bookwork)
The Bounded Inverse Theorem says that if T : X → X is a bounded bijective linear
map where X is a Banach space, then the inverse map T−1 is also bounded. This
theorem does not apply to (c)(iii) because X in (c) is not not complete as shown in
(c)(i) so it is not a Banach space.

3. (a) (2 marks, bookwork)
The dual space X∗ is the space of bounded linear maps f : X → C.

(b) (4 marks, bookwork)
We claim that (`1)∗ ' `∞. Let a = (ak)k≥1 ∈ `∞. We defined fa : `1 → C by
fa(x) =

∑
k≥1 akxk. It is easy to check that fa is linear. Also

|fa(x)| ≤
∑
k≥1

|akxk| ≤ ‖a‖∞‖x‖1.

Hence, fa ∈ X∗. Now take any f ∈ X∗. We denote by ek ∈ `1 the vector whose
k’s coordinate is 1 and the other coordinates are 0. Let ak = f(ek). Then |ak| ≤
‖f‖‖ek‖1 = ‖f‖, so that a = (ak)k≥1 ∈ `∞. By linearity f(x) = fa(x) for all x in the
subspace X of `1 consisting of x that have only finitely many non-zero coordinates.
This subspace is dense in `1. Hence, by continuity f(x) = fa(x) for all x ∈ `∞.

(c) (3 marks, similar to homework)
Since

∑
n≥1 ‖xn‖ <∞, for every ε > 0 and m ≥ m0(ε),

∑
n≥m ‖xn‖ < ε. Consider the

sequence sm =
∑m

n=1 xn. For m1 < m2 we have ‖sm1 − sm2‖ ≤
∑m2

n=m1+1 ‖xn‖. Hence,
if m1 ≥ m0(ε), then ‖sm1 − sm2‖ < ε. This shows that the sequence sm is Cauchy.
Since X is a Banach space, this sequence must converge.

(d) (3 marks, similar to homework)
We apply the Hahn-Banach theorem. Let V be the subspace of X spanned by x. We
define f ∈ X∗ by f(ax) = a. Note that |f(ax)| = |a| = ‖ax‖. By the Hahn-Banach
theorem f can be expended to a linear map X → C such that |f(x)| ≤ ‖x‖ for all
x ∈ X. In particular, |f | ≤ 1 on B.

(e) (5 marks, unseen)
Each element xn defines a linear map Ln : X∗ → C by Ln(f) = f(xn). Since the
sequence f(xn) is Cauchy, it is bounded. Hence, there exists c = c(f) > 0 such that
|Ln(f)| ≤ c for all n. We note that X∗ is also a Banach space. By the Uniform
Boundedness Theorem, supn ‖Ln‖ <∞. Finally,

‖Ln‖ = sup{|Ln(f)| : ‖f‖ = 1} = sup{|f(xn)| : ‖f‖ = 1} = ‖xn‖.
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This proves that the sequence xn is bounded.

(f) (i) (3 marks, bookwork)
An → A in norm topology if ‖An − A‖ → 0. An → A in strong topology if
‖Anx−Ax‖ → 0 for every x ∈ X. An → A in weak topology if f(Anx−Ax)→ 0
for every x ∈ X and f ∈ X∗.

(ii) (5 marks, unseen)
For k > n, Snek = en−k, so that for k > n2 > n1,

‖(Sn1 − Sn2)ek‖1 = ‖ek−n1 − ek−n2‖1 = 2.

Hence, ‖Sn1 − Sn2‖ ≥ 2. This shows that Sn is not a Cauchy sequence, and it
cannot converge in the norm topology.
Take x ∈ `1. For every ε > 0, there exists x0 that has only finitely many nonzero
coordinates such that ‖x − x0‖ < ε. Then for all sufficiently large n, Snx0 = 0,
and ‖Snx‖1 ≤ ‖Snx0‖1 +‖Sn‖‖x−x0‖1 ≤ ‖x−x0‖1 < ε. This proves that Sn → 0
in strong topology.
Alternatively, to prove that Sn does not converge in norm topology, one notes
that ‖Sn‖ = 1. If Sn → T for some operator T , then ‖T‖ = 1, but T = 0 because
Sn → 0 in weak topology. This gives a contradiction.

4. (a) (2 marks, bookwork)
Every bounded linear map f : H → C is of the form f(x) = 〈x, y〉 for a uniquely
defined y ∈ H. Moreover, ‖f‖ = ‖y‖.

(b) (2 marks, bookwork)
xn → x weakly if 〈xn − x, z〉 → 0 for every z ∈ H.

(c) (3 marks, unseen)
〈xn − y, w〉 → 0 and 〈xn − z, w〉 → 0 for every w ∈ H. Then by subtracting we obtain
〈y − z, w〉 = 0. Since this holds for all w ∈ H, this implies that y = z.

(d) (i) (4 marks, unseen)
We need to show that for every f ∈ H∗, f(Axn−Ax)→ 0. The map g(x) = f(Ax)
is a bounded linear map. Hence, g(xn − x)→ 0 as required.

(ii) (5 marks, unseen)
Suppose that the operator A is unbounded. Then there a sequence of unit vectors
xn such ‖Axn‖ ≥ n2. Let yn = xn/n. Then ‖yn‖ → 0 and ‖Ayn‖ → ∞. By the
assumption Ayn → 0 weakly. In particular, the sequence 〈Ayn, y〉 is bounded for
every y ∈ H. Let Ln(y) = 〈Ayn, y〉. Note that Ln ∈ H∗ and ‖Ln‖ = ‖Ayn‖. By
the Uniform Boundedness Principle, supn ‖Ayn‖ <∞. This gives a contradiction.

(e) (4 marks, homework)
Recall that (ST )∗ = T ∗S∗. We have AA−1 = A−1A = I and hence (A−1)∗A∗ =
A∗(A−1)∗ = I. This proves that (A−1)∗ is the inverse of A∗. Since ‖(A−1)∗‖ ≤ ‖A−1‖,
the inverse is bounded.

(f) (5 marks, homework)
For f ∈ H, ‖Aφf‖2 ≤ ‖φ‖∞‖f‖2. Hence, ‖Aφ‖2 ≤ ‖φ‖∞. We claim that the equality
holds. Let m = ‖φ‖∞. Since φ is continuous, there exists x0 ∈ [0, 1] such |φ(x0)| = m.
For every ε > 0, there exists δ > 0 such that |φ(x0)−φ(x)| < ε for all x ∈ Bδ(x0). We
take f ∈ H such that supp(f) ⊂ Bδ(x0). Then

‖Aφf‖2 ≥ ‖Amf‖2 − ‖(Aφ − Am)f‖2 ≥ m‖f‖2 − ε‖f‖2.
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This shows that ‖Aφ‖2 ≥ m− ε for every ε > 0. Hence, ‖Aφ‖2 = m.

For f1, f2 ∈ H, 〈Aφf1, f2〉 = 〈φf1, f2〉 =
〈
f1, φ̄f2

〉
=
〈
f1, Aφ̄f2

〉
. Hence, A∗φ = Aφ̄.

5. (a) (3 marks, bookwork)
A subset is meager if it is a countable union of sets whose closure has empty interior.
The Baire Category Theorem states that a complete metric space is not meager.

(b) (3 marks, similar to homework)

Consider the linear maps Ln(f) =
∫ 1

0
φn(x)f(x)dx. We claim that ‖Ln‖ = ‖φn‖2.

Indeed, |Ln(f)| ≤ ‖φn‖2‖f‖2, so that ‖Ln‖ ≤ ‖φn‖2. Taking f = φ̄n, |Ln(f)| =
‖φ‖2‖f‖2, so that we deduce that ‖Ln‖ ≥ ‖φn‖2 which proves the claim. The space
L2([0, 1]) is complete, and we can apply the Uniform Boundedness Theorem to the
linear maps. Suppose that for every f ∈ L2([0, 1]), the sequence Ln(f) is bounded.
Then by the Uniform Boundedness Theorem, the norms ‖Ln‖ are also uniformly
bounded. This contradicts our assumption.

(c) (i) (3 marks, bookwork and homework)
Let x = (xk)k≥1 ∈ `1. This means that

∑
k≥1 |xk| < ∞. Then |xk| → 0; in

particular, |xk|2 ≤ |xk| for all sufficiently large k. Hence, it follows that that∑
k≥1 |xk|2 <∞. This shows that `1 ⊂ `2.

Take x = (xk)k≥1 ∈ `2. Since
∑

k≥1 |xk|2 < ∞, for all ε > 0 and n ≥ n0(ε)∑
k≥n+1 |xk|2 < ε. Take y = (yk)k≥1 such that yk = xk for k ≤ n0(ε) and

yk = 0 otherwise. Clearly, yk ∈ `1 and ‖x − y‖2
2 < ε. This shows that x can be

approximated by elements from `1.

(ii) (4 marks, unseen)

Suppose that x(n) = (x
(n)
k )k≥1 ∈ BR and x(n) → x in `2. This implies that for

every k, x
(n)
k → xk as n→∞. We have

‖x‖1 = lim
N→∞

N∑
k=1

|xk| = lim
N→∞

N∑
k=1

lim
n→∞

|x(n)
k | = lim

N→∞
lim
n→∞

N∑
k=1

|x(n)
k | ≤ R.

(iii) (4 marks, unseen)
Suppose that `1 has non-empty interior in `2, i.e., there exists x ∈ `1 and ε > 0
such that x+y ∈ `1 for every y with ‖y‖2 < ε. Then for every z ∈ `2, x+ ε

2‖z‖2 z ∈
`1. Since x ∈ `1, this implies that z ∈ `1. We have shown that `1 = `2, but
this is not true. For instance, x = (1/k)k≥1 belongs to `2, but not to `1. This
contradiction implies that `1 has empty interior in `2.
Now `1 = ∪∞R=1BR where each BR is closed and has empty interior, so that `1 is
meager in `2.

(d) (i) (4 marks, similar to homework)
We write fn(x) = (e2πinx + e−2πinx)/2. By orthogonality for n 6= m,

‖fn − fm‖2
2 =

1

4
‖e2πinx + e−2πinx − e2πimx − e−2πimx‖2

2 = 1.

This implies that fn is not a Cauchy sequence in H, so that it doesn’t converge.

(ii) (4 marks, similar to homework)
We use that the space of trigonometric polynomials is dense in H. For every
ε > 0, there exists a trigonometric polynomial such that ‖g − p‖2 < ε. It follows
from orthogonality that for sufficiently large n, 〈fn, p〉 = 0. We obtain

| 〈fn, g〉 | ≤ | 〈fn, p〉 |+ | 〈fn, g − p〉 | ≤ ‖fn‖2‖g − p‖2 < ε/
√

2.
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This proves that 〈fn, g〉 → 0.

End of solutions.
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