EXAMINATION SOLUTIONS

FUNCTIONAL ANALYSIS MATH 36202 (Paper Code MATH M6202)

May-June 2015, 2 hours and 30 minutes

1. (a) (5 marks, bookwork)

Using the linearity of the inner product,

$$||x + ty||^{2} = \langle x + ty, x + ty \rangle = ||x||^{2} + 2t \langle x, y \rangle + t^{2} ||y||^{2} \ge 0.$$

Since this quadratic polynomial is always non-negative, its discriminant satisfies $4 \langle x, y \rangle^2 - 4 \|x\|^2 \|y\|^2 \le 0$. Hence, $|\langle x, y \rangle| \le \|x\| \|y\|$, as required.

(b) (5 marks, similar to homework) By the Cauchy-Schwarz inequality,

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| \le |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \le ||x_n|| ||y_n - y|| + ||x_n - x|| ||y||.$$

We observe that $||x_n|| \leq ||x|| + ||x_n - x|| \to ||x||$, so that $||x_n||$ is bounded. Since $||x_n - x|| \to 0$ and $||y_n - y|| \to 0$, this implies that the above expression converges to zero.

(c) (5 marks, unseen)

Observe that

$$||tx + (1-t)y|| \le ||tx|| + ||(1-t)y|| = 1,$$

for any 0 < t < 1.

Suppose in contrary that the equality holds for some t in (0, 1). Then

$$1 = \langle tx + (1-t)y, tx + (1-t)y \rangle = t^2 + 2t(1-t) \langle x, y \rangle + (1-t)^2,$$

and we obtain $\langle x, y \rangle = 1 = ||x|| ||y||$ — the equality case in the Cauchy–Schwarz inequality. This is only possible when the vectors x and y are linearly dependent, which gives a contradiction.

(d) (i) (2 marks, similar to homework)

If $u, v \in H_0$ and $a, b \in \mathbb{F}$, then $\langle au + bv, x_0 \rangle = a \langle u, x_0 \rangle + b \langle v, x_0 \rangle = 0$. Hence, H_0 is a subspace.

Suppose that $x_n \in H_0$ and $x_n \to x \in H$. Then

$$|\langle x_n, x_0 \rangle - \langle x_n, x_0 \rangle| = |\langle x_n - x, x_0 \rangle| \le ||x_n - x|| ||x_0|| \to 0.$$

This implies that $\langle x, x_0 \rangle = 0$ as required.

(ii) (3 marks, similar to bookwork)

Given $y \in H$, we write $y = y_0 + cx_0$ where $c = \frac{\langle y, x_0 \rangle}{\|x_0\|^2}$ and $y_0 = y - cx_0$. Then for $z \in H_0$, we have $y - z = (y_0 - z) + cx_0$ where $(y_0 - z) \perp cx_0$. Hence

$$||y - z||^2 = ||y_0 - z||^2 + |c|^2 ||x_0||^2$$

This shows that $||y - z|| \ge |c| ||x_0|| = \frac{|\langle y, x_0 \rangle|}{||x_0||}$, where equality holds when y = z. Thus, the distance from y to H_0 is $\frac{|\langle y, x_0 \rangle|}{||x_0||}$.

(e) (i) (2 marks, bookwork)

Let (e_n) be an orthonormal system in H. Then for every $x \in H$,

$$\sum_{n} |\langle x, e_n \rangle|^2 \le ||x||^2.$$

(ii) (3 marks, unseen)

Suppose that the Bessel inequality holds. Taking $x = e_1$, we deduce that

$$|\langle e_1, e_1 \rangle|^2 + \sum_{n \ge 2} |\langle e_1, e_n \rangle|^2 \le ||e_1||^2$$

and this implies that $\langle e_1, e_n \rangle = 0$ for all $n \ge 2$. The same argument shows that $\langle e_k, e_l \rangle = 0$ for all $k \ne l$.

2. (a) (4 marks, bookwork)

Let $x^{(n)} = (x_k^{(n)})_{k\geq 1}$ be a Cauchy sequence in ℓ^{∞} . This means that for every $\epsilon > 0$, and $n, m \geq n_0(\epsilon)$,

$$||x^{(n)} - x^{(m)}||_{\infty} = \sup_{k} |x_{k}^{(n)} - x_{k}^{(m)}| < \epsilon$$

This, in particular, implies that for every k and $n, m \ge n_0(\epsilon)$,

$$|x_k^{(n)} - x_k^{(m)}| < \epsilon.$$

In particular, each sequence $(x_k^{(n)})_{n\geq 1}$ is a Cauchy sequence. Since \mathbb{R} is complete, $x_k^{(n)} \to x_k$ as $n \to \infty$ for some $x_k \in \mathbb{R}$. Passing to the limit as $m \to \infty$ in the above inequality, we deduce that for every k and $n \ge n_0(\epsilon)$,

$$|x_k^{(n)} - x_k| \le \epsilon.$$

This implies that for every k, $|x_k| < \epsilon + ||x^{(n)}||_{\infty}$, and $x = (x_k)_{k \ge 1}$ belongs to ℓ^{∞} . The above inequality also implies that $||x^{(n)} - x||_{\infty} \to 0$ as $n \to \infty$.

(b) (5 marks, similar to bookwork)

Let S be complete subspace of a Banach space X. Let $x_n \in S$ such that $x_n \to x \in X$. Then $||x_n - x_m|| \le ||x_n - x|| + ||x_m - x|| \to 0$ as $n, m \to \infty$, so that the sequence x_n is Cauchy. Hence, $x_n \to y$ for some $y \in S$. Since the limit is unique $x = y \in S$. This shows that S is closed.

Now suppose that S is a closed subspace of X, and x_n is a Cauchy sequence in S. Since X in Banach space, by completeness $x_n \to x$ for some $x \in X$, but since S is closed, $x \in S$. This proves that x_n converges in S, and S is complete.

(c) (i) (4 marks, similar to homework)

We consider $x = (1/k)_{k\geq 1} \in \ell^{\infty}$ and $x^{(n)} \in X$ such that $x_k^{(n)} = 1/k$ for $k \leq n$ and $x_k^{(n)} = 0$ for k > n. Then $||x^{(n)} - x|| \leq 1/(n+1) \to 0$. This shows that x belongs to the closure of X, and X is not closed (hence, not complete) in ℓ^{∞} .

(ii) (5 marks, similar to homework)

We claim that \bar{X} consists of sequences $x = (x_k)_{k\geq 1}$ such that $x_k \to 0$. Let x be such a sequence. Then for every $\epsilon > 0$ and $n \geq n_0(\epsilon)$, we have $|x_k| < \epsilon$. We take $x_k^{(n)} = x_k$ for $k \leq n_0(\epsilon)$ and $x_k^{(n)} = 0$ for k > n. Then $||x^{(n)} - x||_{\infty} < \epsilon$. This proves that $x \in \bar{X}$. Conversely, suppose that $x^{(n)} \to x$ for some $x^{(n)} \in X$. Then for every $\epsilon > 0$ and sufficiently large n, $||x^{(n)} - x||_{\infty} < \epsilon$. Since $x^{(n)} \in X$, for all sufficiently large k, $|x_k^{(n)} - x_k| = |x_k|$. This implies that for all sufficiently large k, $|x_k| < \epsilon$. Hence, $x_k \to 0$, as claimed.

(iii) (4 marks, similar to homework)

Consider the operator $S: X \to X$ defined by $(x_n) \to (2^n x_n)$. Then TS = ST = I. Take $x^{(k)} \in X$ such that $x_n^{(k)} = 1$ for $n \leq k$ and $x_n^{(k)} = 0$ for n > k. Then $\|x^{(k)}\|_{\infty} = 1$ and $\|Sx^{(k)}\|_{\infty} = 2^k$. Since $\|S\| = \sup\{\|Sx\|_{\infty} : \|x\|_{\infty} = 1\}$, this shows that $\|S\| = \infty$.

(d) (3 marks, bookwork)

The Bounded Inverse Theorem says that if $T: X \to X$ is a bounded bijective linear map where X is a Banach space, then the inverse map T^{-1} is also bounded. This theorem does not apply to (c)(iii) because X in (c) is not not complete as shown in (c)(i) so it is not a Banach space.

3. (a) (2 marks, bookwork)

The dual space X^* is the space of bounded linear maps $f: X \to \mathbb{C}$.

(b) (4 marks, bookwork)

We claim that $(\ell^1)^* \simeq \ell^\infty$. Let $a = (a_k)_{k\geq 1} \in \ell^\infty$. We defined $f_a : \ell^1 \to \mathbb{C}$ by $f_a(x) = \sum_{k\geq 1} a_k x_k$. It is easy to check that f_a is linear. Also

$$|f_a(x)| \le \sum_{k\ge 1} |a_k x_k| \le ||a||_{\infty} ||x||_1.$$

Hence, $f_a \in X^*$. Now take any $f \in X^*$. We denote by $e_k \in \ell^1$ the vector whose k's coordinate is 1 and the other coordinates are 0. Let $a_k = f(e_k)$. Then $|a_k| \leq ||f|| ||e_k||_1 = ||f||$, so that $a = (a_k)_{k \geq 1} \in \ell^\infty$. By linearity $f(x) = f_a(x)$ for all x in the subspace X of ℓ^1 consisting of x that have only finitely many non-zero coordinates. This subspace is dense in ℓ^1 . Hence, by continuity $f(x) = f_a(x)$ for all $x \in \ell^\infty$.

(c) (3 marks, similar to homework)

Since $\sum_{n\geq 1} \|x_n\| < \infty$, for every $\epsilon > 0$ and $m \ge m_0(\epsilon)$, $\sum_{n\geq m} \|x_n\| < \epsilon$. Consider the sequence $s_m = \sum_{n=1}^m x_n$. For $m_1 < m_2$ we have $\|s_{m_1} - s_{m_2}\| \le \sum_{n=m_1+1}^{m_2} \|x_n\|$. Hence, if $m_1 \ge m_0(\epsilon)$, then $\|s_{m_1} - s_{m_2}\| < \epsilon$. This shows that the sequence s_m is Cauchy. Since X is a Banach space, this sequence must converge.

(d) (3 marks, similar to homework)

We apply the Hahn-Banach theorem. Let V be the subspace of X spanned by x. We define $f \in X^*$ by f(ax) = a. Note that |f(ax)| = |a| = ||ax||. By the Hahn-Banach theorem f can be expended to a linear map $X \to \mathbb{C}$ such that $|f(x)| \leq ||x||$ for all $x \in X$. In particular, $|f| \leq 1$ on B.

(e) (5 marks, unseen)

Each element x_n defines a linear map $L_n : X^* \to \mathbb{C}$ by $L_n(f) = f(x_n)$. Since the sequence $f(x_n)$ is Cauchy, it is bounded. Hence, there exists c = c(f) > 0 such that $|L_n(f)| \leq c$ for all n. We note that X^* is also a Banach space. By the Uniform Boundedness Theorem, $\sup_n ||L_n|| < \infty$. Finally,

$$||L_n|| = \sup\{|L_n(f)| : ||f|| = 1\} = \sup\{|f(x_n)| : ||f|| = 1\} = ||x_n||$$

This proves that the sequence x_n is bounded.

(f) (i) (3 marks, bookwork)

 $A_n \to A$ in norm topology if $||A_n - A|| \to 0$. $A_n \to A$ in strong topology if $||A_n x - Ax|| \to 0$ for every $x \in X$. $A_n \to A$ in weak topology if $f(A_n x - Ax) \to 0$ for every $x \in X$ and $f \in X^*$.

(ii) (5 marks, unseen)

For k > n, $S^n e_k = e_{n-k}$, so that for $k > n_2 > n_1$,

$$||(S^{n_1} - S^{n_2})e_k||_1 = ||e_{k-n_1} - e_{k-n_2}||_1 = 2.$$

Hence, $||S^{n_1} - S^{n_2}|| \ge 2$. This shows that S^n is not a Cauchy sequence, and it cannot converge in the norm topology.

Take $x \in \ell^1$. For every $\epsilon > 0$, there exists x_0 that has only finitely many nonzero coordinates such that $||x - x_0|| < \epsilon$. Then for all sufficiently large n, $S^n x_0 = 0$, and $||S^n x||_1 \le ||S^n x_0||_1 + ||S^n|| ||x - x_0||_1 \le ||x - x_0||_1 < \epsilon$. This proves that $S^n \to 0$ in strong topology.

Alternatively, to prove that S^n does not converge in norm topology, one notes that $||S^n|| = 1$. If $S^n \to T$ for some operator T, then ||T|| = 1, but T = 0 because $S^n \to 0$ in weak topology. This gives a contradiction.

4. (a) (2 marks, bookwork)

Every bounded linear map $f : H \to \mathbb{C}$ is of the form $f(x) = \langle x, y \rangle$ for a uniquely defined $y \in H$. Moreover, ||f|| = ||y||.

(b) (2 marks, bookwork)

 $x_n \to x$ weakly if $\langle x_n - x, z \rangle \to 0$ for every $z \in H$.

(c) (3 marks, unseen)

 $\langle x_n - y, w \rangle \to 0$ and $\langle x_n - z, w \rangle \to 0$ for every $w \in H$. Then by subtracting we obtain $\langle y - z, w \rangle = 0$. Since this holds for all $w \in H$, this implies that y = z.

(d) (i) (4 marks, unseen)

We need to show that for every $f \in H^*$, $f(Ax_n - Ax) \to 0$. The map g(x) = f(Ax) is a bounded linear map. Hence, $g(x_n - x) \to 0$ as required.

(ii) (5 marks, unseen)

Suppose that the operator A is unbounded. Then there a sequence of unit vectors x_n such $||Ax_n|| \ge n^2$. Let $y_n = x_n/n$. Then $||y_n|| \to 0$ and $||Ay_n|| \to \infty$. By the assumption $Ay_n \to 0$ weakly. In particular, the sequence $\langle Ay_n, y \rangle$ is bounded for every $y \in H$. Let $L_n(y) = \overline{\langle Ay_n, y \rangle}$. Note that $L_n \in H^*$ and $||L_n|| = ||Ay_n||$. By the Uniform Boundedness Principle, $\sup_n ||Ay_n|| < \infty$. This gives a contradiction.

(e) (4 marks, homework)

Recall that $(ST)^* = T^*S^*$. We have $AA^{-1} = A^{-1}A = I$ and hence $(A^{-1})^*A^* = A^*(A^{-1})^* = I$. This proves that $(A^{-1})^*$ is the inverse of A^* . Since $||(A^{-1})^*|| \le ||A^{-1}||$, the inverse is bounded.

(f) (5 marks, homework)

For $f \in H$, $||A_{\phi}f||_2 \leq ||\phi||_{\infty} ||f||_2$. Hence, $||A_{\phi}||_2 \leq ||\phi||_{\infty}$. We claim that the equality holds. Let $m = ||\phi||_{\infty}$. Since ϕ is continuous, there exists $x_0 \in [0, 1]$ such $|\phi(x_0)| = m$. For every $\epsilon > 0$, there exists $\delta > 0$ such that $|\phi(x_0) - \phi(x)| < \epsilon$ for all $x \in B_{\delta}(x_0)$. We take $f \in H$ such that $\operatorname{supp}(f) \subset B_{\delta}(x_0)$. Then

$$||A_{\phi}f||_{2} \ge ||A_{m}f||_{2} - ||(A_{\phi} - A_{m})f||_{2} \ge m||f||_{2} - \epsilon ||f||_{2}.$$

This shows that $||A_{\phi}||_2 \ge m - \epsilon$ for every $\epsilon > 0$. Hence, $||A_{\phi}||_2 = m$. For $f_1, f_2 \in H$, $\langle A_{\phi} f_1, f_2 \rangle = \langle \phi f_1, f_2 \rangle = \langle f_1, \overline{\phi} f_2 \rangle = \langle f_1, A_{\overline{\phi}} f_2 \rangle$. Hence, $A_{\phi}^* = A_{\overline{\phi}}$.

5. (a) (3 marks, bookwork)

A subset is meager if it is a countable union of sets whose closure has empty interior. The Baire Category Theorem states that a complete metric space is not meager.

(b) (3 marks, similar to homework)

Consider the linear maps $L_n(f) = \int_0^1 \phi_n(x) f(x) dx$. We claim that $||L_n|| = ||\phi_n||_2$. Indeed, $|L_n(f)| \leq ||\phi_n||_2 ||f||_2$, so that $||L_n|| \leq ||\phi_n||_2$. Taking $f = \phi_n$, $|L_n(f)| = ||\phi||_2 ||f||_2$, so that we deduce that $||L_n|| \geq ||\phi_n||_2$ which proves the claim. The space $L^2([0,1])$ is complete, and we can apply the Uniform Boundedness Theorem to the linear maps. Suppose that for every $f \in L^2([0,1])$, the sequence $L_n(f)$ is bounded. Then by the Uniform Boundedness Theorem, the norms $||L_n||$ are also uniformly bounded. This contradicts our assumption.

(c) (i) (3 marks, bookwork and homework)

Let $x = (x_k)_{k \ge 1} \in \ell^1$. This means that $\sum_{k \ge 1} |x_k| < \infty$. Then $|x_k| \to 0$; in particular, $|x_k|^2 \le |x_k|$ for all sufficiently large k. Hence, it follows that that $\sum_{k \ge 1} |x_k|^2 < \infty$. This shows that $\ell^1 \subset \ell^2$.

Take $x = (x_k)_{k\geq 1} \in \ell^2$. Since $\sum_{k\geq 1} |x_k|^2 < \infty$, for all $\epsilon > 0$ and $n \geq n_0(\epsilon)$ $\sum_{k\geq n+1} |x_k|^2 < \epsilon$. Take $y = (y_k)_{k\geq 1}$ such that $y_k = x_k$ for $k \leq n_0(\epsilon)$ and $y_k = 0$ otherwise. Clearly, $y_k \in \ell^1$ and $||x - y||_2^2 < \epsilon$. This shows that x can be approximated by elements from ℓ^1 .

(ii) (4 marks, unseen)

Suppose that $x^{(n)} = (x_k^{(n)})_{k\geq 1} \in B_R$ and $x^{(n)} \to x$ in ℓ^2 . This implies that for every $k, x_k^{(n)} \to x_k$ as $n \to \infty$. We have

$$\|x\|_{1} = \lim_{N \to \infty} \sum_{k=1}^{N} |x_{k}| = \lim_{N \to \infty} \sum_{k=1}^{N} \lim_{n \to \infty} |x_{k}^{(n)}| = \lim_{N \to \infty} \lim_{n \to \infty} \sum_{k=1}^{N} |x_{k}^{(n)}| \le R$$

(iii) (4 marks, unseen)

Suppose that ℓ^1 has non-empty interior in ℓ^2 , i.e., there exists $x \in \ell^1$ and $\epsilon > 0$ such that $x + y \in \ell^1$ for every y with $||y||_2 < \epsilon$. Then for every $z \in \ell^2$, $x + \frac{\epsilon}{2||z||_2} z \in \ell^1$. Since $x \in \ell^1$, this implies that $z \in \ell^1$. We have shown that $\ell^1 = \ell^2$, but this is not true. For instance, $x = (1/k)_{k \ge 1}$ belongs to ℓ^2 , but not to ℓ^1 . This contradiction implies that ℓ^1 has empty interior in ℓ^2 .

Now $\ell^1 = \bigcup_{R=1}^{\infty} B_R$ where each B_R is closed and has empty interior, so that ℓ^1 is meager in ℓ^2 .

(d) (i) (4 marks, similar to homework)

We write $f_n(x) = (e^{2\pi i nx} + e^{-2\pi i nx})/2$. By orthogonality for $n \neq m$,

$$||f_n - f_m||_2^2 = \frac{1}{4} ||e^{2\pi i nx} + e^{-2\pi i nx} - e^{2\pi i mx} - e^{-2\pi i mx}||_2^2 = 1.$$

This implies that f_n is not a Cauchy sequence in H, so that it doesn't converge.

(ii) (4 marks, similar to homework)

We use that the space of trigonometric polynomials is dense in H. For every $\epsilon > 0$, there exists a trigonometric polynomial such that $||g - p||_2 < \epsilon$. It follows from orthogonality that for sufficiently large n, $\langle f_n, p \rangle = 0$. We obtain

$$|\langle f_n, g \rangle| \le |\langle f_n, p \rangle| + |\langle f_n, g - p \rangle| \le ||f_n||_2 ||g - p||_2 < \epsilon/\sqrt{2}$$

This proves that $\langle f_n, g \rangle \to 0$.

End of solutions.