
10 The Open Mapping Theorem and the Closed

Graph Theorem

10.1 The Open Mapping Theorem

We recall that a map f : X → Y between metric spaces in continuous if and
only if the preimages f−1(U) of all open sets in Y are open in X.

Definition 10.1 (open mapping). Let X, Y be metric spaces. A map f :
X → Y is called an open mapping if for all open U ⊂ X, the sets f(U) are
open in Y . In other words, “f takes open sets to open sets.”

Example 10.2. 1. The projection π : Rn → Rk defined by

(x1, . . . , xn) 7→ (x1, . . . , xk),

where k < n, is open. Let U ⊂ Rn be an open set, and consider its image
π(U) ⊂ Rk. Let y ∈ T (U). Then y = T (x) for some x = (x1, . . . , xn) ∈
U . There is an open set of the form Bε(x) = (x1 − ε, x1 + ε) × · · · ×
(xn− ε, xn + ε). Then π(Bε(x)) = (x1− ε, x1 + ε)× · · ·× (xk− ε, xk + ε)
is an open set contained in π(U) and containing the given point y, so
π(U) is open and the projection π is an open mapping.

2. Inclusion map Rk ↪→ Rn, defined by

(x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0),

where k < n, is not open. It is clear that any open ball around a point
in the image of T will contain points that are not in the image of T , so
this map cannot be open.

3. Sine map sin : R→ R is not open. The image of a long enough interval
is the closed interval [−1, 1], which is not open, so sin is not an open
mapping.

Theorem 10.3 (Open Mapping Theorem). Let X, Y be Banach spaces and
T : X → Y a surjective bounded linear map. Then T is open.

Proof. Let

BX
r = {x ∈ X : ‖x‖ < r} and BY

r = {y ∈ Y : ‖y‖ < r}.

First, we show that there exists r > 0 such that

BY
r ⊂ T (BX

1 ). (1)
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For this, we use the Baire Category Theorem. We have

X =
∞⋃
n=1

BX
n ,

and since T is surjective,

Y =
∞⋃
n=1

T (BX
n ).

We have also assumed that Y is Banach, hence complete. By the Baire Cate-
gory Theorem, there must be some n0 ∈ N such that T (BX

n0
) has non-empty

interior. This implies that T (BX
1 ) = n−10 T (BX

n0
) also has non-empty interior.

Hence, there exists y0 ∈ T (BX
1 ) and ε > 0 such that

y0 +BY
ε ⊂ T (BX

1 ). (2)

We claim that
T (BX

1 )− y0 ⊂ T (BX
2 ). (3)

Take y ∈ T (BX
1 ) and xn ∈ X such that Txn → x and ‖xn‖ < 1. We

also have a sequence zn ∈ X such that Tzn → y0 and ‖zn‖ < 1. Then
y − y0 = limT (xn − zn) and ‖xn − zn‖ < 1. This implies (3). Combining (2)
and (3), we deduce that

BY
ε ⊂ T (BX

2 ). (4)

Furthermore, because T is linear, we also have

BY
ε/2n ⊂ T (BX

1/2n−1) for all n ≥ 1. (5)

Take arbitrary y ∈ BY
ε/8. Then y ∈ T (BX

1/4). So that we can find x1 ∈ BX
1/4

such that ‖y − Tx1‖ < ε
8
, that is, y − Tx1 ∈ BY

ε/8. Applying (5) again, we

deduce that there exists x2 ∈ BX
1/8 such that ‖y − Tx1 − Tx2‖ < ε

16
, that is,

y − Tx1 ∈ BY
ε/16. Proceeding inductively, we produce elements xk ∈ BX

1/2k+1

such that ∥∥∥∥∥y −
n∑
k=1

T (xk)

∥∥∥∥∥ < ε

2n+2
. (6)

Now let zn = x1 + · · ·+ xn. For m < n,

‖zn − zm‖ = ‖xm+1 + · · ·+ xn‖ ≤
n∑

k=m+1

‖xk‖ <
n∑

k=m+1

1

2k+1
<

1

2m+1
.
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Hence, (zn)n≥1 is a Cauchy sequence, and zn → z for some z ∈ X. We note
that

‖z‖ = lim
n→∞
‖zn‖ ≤ lim

n→∞

n∑
k=1

‖xk‖ ≤
∞∑
k=1

1

2k+1
=

1

2
,

so that x ∈ BX
1 . Now continuity of T and equation (6) imply that T (z) = y.

Thus, we have proved that BY
ε/8 ⊂ T (BX

1 ) verifying (1).

Now we complete the proof of the theorem using (1). Let U ⊂ X be open.
We want to show that T (U) is also open. So take y ∈ T (U). Then y = Tx
with x ∈ U . Since U is open, there exists ε > 0 such that BX

ε + x ⊂ U By
(1) and linearity of T , we obtain BY

rε ⊂ T (BX
ε ), and

BY
rε + y ⊂ T (BX

ε + x) ⊂ T (U).

This shows that T (U) is open, as required.

We deduce the following corollary

Corollary 10.4. Let T : X → Y be a continuous (bounded) linear bijection
between Banach spaces X and Y . Then T−1 is continuous (bounded).

This implies the following surprising consequence:

Corollary 10.5. Let ‖ · ‖1 and ‖ · ‖2 be norms on a vector space X such that
(X, ‖ · ‖1) and (X, ‖ · ‖2) are complete. Then if

‖ · ‖2 ≤ c ‖ · ‖1 for some c > 0,

then also
‖ · ‖1 ≤ c′ ‖ · ‖2 for some c′ > 0,

Indeed, then the identity map (X, ‖ · ‖1)→ (X, ‖ · ‖2) is bounded, and it
follows from Corollary 10.4 that its inverse is also bounded.

10.2 Closed linear operators

So far we have mostly discussed bounded linear operator. Many of the impor-
tant classes of operators (for instance, differential operators) are unbounded.
We introduce the so-called closed operators.

Definition 10.6 (closed linear operator). Let X, Y be normed spaces, D a
subspace of X, and T : D → Y a linear operator. The operator T is closed
if its graph

Γ(T ) = {(x, Tx) ∈ X × Y : x ∈ D}
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is closed in the normed space X × Y .
This means that for every sequence xn ∈ D such that xn → x and

Txn → y, we have x ∈ D and Tx = y.

Example 10.7. LetX = C[0, 1] be the space of continuous functions equipped
with max-norm. We consider the derivative operator D : D → X be defined
by D(x)(t) = x′(t) for x ∈ D = C1[0, 1] in the space of continuously differ-
entiable functions.

The operator D is an unbounded operator. Indeed, let xn(t) = tn, for
n ≥ 1. Then ‖x‖ = 1. Also, D(xn) = x′n(t) = ntn−1, and we can see that
‖D(xn)‖ = n. Therefore, ‖D‖ ≥ n for any n ≥ 1, so D is an unbounded
operator.

We show that D is a closed operator. Let xn ∈ D be a sequence converging
to x ∈ C[0, 1], and such that x′n → y ∈ C[0, 1]. Since the convergence is
uniform, we obtain∫ t

0

y(τ) dτ =

∫ t

0

lim
n→∞

x′n(τ) dτ = lim
n→∞

∫ t

0

x′n(τ) dτ = lim
n→∞

(xn(t)− xn(0))

= x(t)− x(0).

This shows that x(t) = x(0) +
∫ t
0
y(τ) dτ . Therefore, x ∈ C1[0, 1], and x′ = y.

We conclude that D is a closed linear operator.

Another source of examples of closed operators is Hilbert-adjoint opera-
tors:

Definition (Hilbert adjoints). Let X be a Hilbert space. Let T : D → X
be a linear operator defined on a dense subspace D of X is dense. Then the
Hilbert-adjoint operator of T is the operator T ∗ : D∗ → X with

D∗ = {y ∈ Y : ∃y∗ ∈ X such that 〈Tx, y〉 = 〈x, y∗〉 for all x ∈ D}

defined by T ∗(y) = y∗.

We note that the Hilbert-adjoint operator satisfies

〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D and y ∈ D∗.

Theorem 10.8. Hilbert-adjoint operators are closed.

Proof. Suppose yn ∈ D∗ converges to y ∈ X, and T ∗yn converges to z ∈ X.
Since yn ∈ D∗, we know that for any x ∈ D , 〈Tx, yn〉 = 〈x, T ∗yn〉. Passing to
the limit, we obtain 〈Tx, y〉 = 〈x, z〉. This means that y ∈ D∗ and T ∗y = z.
Hence, T ∗ is closed.
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10.3 The Closed Graph Theorem

The following theorem treats the question of when a bounded operator is
closed.

Theorem 10.9. Let X and Y be normed spaces. Let T : D → Y be a bounded
linear operator defined on a subspace D of X.

1. If D is closed in X, then T is closed.

2. If T is closed and Y is complete, then D is closed in X.

Proof. Suppose xn ∈ D converges to x ∈ X and Txn → y ∈ Y . Since we
have assumed that D is closed, we must have x ∈ D . Since T is bounded, it
is continuous, and therefore y = Tx. This proves that T is closed.

Suppose that T is closed and Y is complete. Let x ∈ D and xn ∈ D such
xn → x. Since

‖Txm − Txn‖ ≤ ‖T‖ ‖xm − xn‖,

it follows that Txn is a Cauchy sequence. Therefore, Txn → y for some y ∈ Y .
Since T is closed, we conclude that x ∈ D . Hence, D is closed.

The following theorem gives a condition for when a closed linear operator
is bounded.

Theorem 10.10 (Closed Graph Theorem). Let X, Y be Banach spaces and
T : D → Y a closed linear operator defined on a closed subspace D ⊂ X.
Then T is bounded.

To appreciate the Closed Graph Theorem, we observe that to check that
a map T : X → Y is continuous, one normally need to show that

xn → x ⇒ Txn → y and Tx = y.

In the setting of the Closed Graph Theorem, continuity follows once we show
that

xn → x and Txn → y ⇒ Tx = y.

We easily obtain the following corollary.

Corollary 10.11. Let T : H → H be an linear operator on a Hilbert space
H such that 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H. Then T is bounded.

Indeed, the operator T is closed by Theorem 10.8.
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Proof of Theorem 10.10. We first note that the space X × Y equipped with
‖(x, y)‖ = ‖x‖ + ‖y‖ is complete (exercise). Since the graph Γ(T ) is closed
in X × Y , it is a Banach space. Since the domain D is closed, it is also a
Banach space.

We consider the map

P : Γ(T )→ D : (x, Tx) 7→ x.

Clearly, P is linear and a bijection. We have P−1x = (x, Tx). Since

‖P (x, Tx)‖ = ‖x‖ ≤ ‖x‖+ ‖Tx‖ = ‖(x, Tx)‖,

it is also bounded. By the Open Mapping Theorem, the inverse P−1 is
bounded, meaning that there is an C > 0 such that for any x ∈ D ,

‖P−1x‖ = ‖x‖+ ‖Tx‖ ≤ C ‖x‖.

Hence, T is bounded.
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