10 The Open Mapping Theorem and the Closed
Graph Theorem

10.1 The Open Mapping Theorem

We recall that a map f : X — Y between metric spaces in continuous if and
only if the preimages f~1(U) of all open sets in Y are open in X.

Definition 10.1 (open mapping). Let X,Y be metric spaces. A map f :
X — Y is called an open mapping if for all open U C X, the sets f(U) are
open in Y. In other words, “f takes open sets to open sets.”

Example 10.2. 1. The projection 7 : R* — R* defined by
(X1, ..y 20) = (21, ..., Tk),

where k£ < n,is open. Let U C R" be an open set, and consider its image
7(U) C R¥. Let y € T(U). Then y = T(x) for some x = (z1,...,7,) €
U. There is an open set of the form B.(z) = (x1 — €, +€) X -+ X
(x, — €,y +€). Then m(B(z)) = (21 — €, 214+ €) X - X (v, — €, 71 + €)
is an open set contained in 7(U) and containing the given point y, so
7(U) is open and the projection 7 is an open mapping.

2. Inclusion map R* < R", defined by
(1, ..., 25) — (T1,...,24,0,...,0),

where k < n, is not open. It is clear that any open ball around a point
in the image of T" will contain points that are not in the image of T', so
this map cannot be open.

3. Sine map sin : R — R is not open. The image of a long enough interval
is the closed interval [—1, 1], which is not open, so sin is not an open

mapping.

Theorem 10.3 (Open Mapping Theorem). Let X,Y be Banach spaces and
T:X —Y a surjective bounded linear map. Then T is open.

Proof. Let
BYX={zecX:|z|<r} and BY ={yecY: |yl <r}
First, we show that there exists » > 0 such that

BY c T(B). (1)
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For this, we use the Baire Category Theorem. We have

xX=|]JB)
n=1
and since 7' is surjective,
Yy = J71(B)).
n=1

We have also assumed that Y is Banach, hence complete. By the Baire Cate-
gory Theorem, there must be some ng € N such that T'(B;Y ) has non-empty

interior. This implies that T'(B{X) = ny' T(B.X) also has non-empty interior.
Hence, there exists yo € T(B;¢) and € > 0 such that

o + B C T(BY). (2)

We claim that

T(Bf*) —yo C T(By). (3)

Take y € T(B;") and z,, € X such that Tz, — z and ||z,]| < 1. We
also have a sequence z, € X such that Tz, — yo and ||z,]| < 1. Then
y— Yo =limT(x, — z,) and ||z, — 2,|| < 1. This implies (3). Combining (2)
and (3), we deduce that

B; C T(B5). (4)

Furthermore, because T is linear, we also have

BE/Qn C T(Bf§2n ) foralln>1. (5)

Take arbitrary y € Bz;g Then y € T(BX,) 1/4) So that we can find z; € 81/4
such that ||y — Txq| < &, that is, y — Tx; € Be/g. Applying (5) agam we
deduce that there exists ;EQ € 31/8 such that ||y — Twy — T'zs|| < 5, that is,

y—"Tx € BE /16- Proceeding inductively, we produce elements z; € ijQk 1

such that
- YT

Now let z,, = x1 + - - + x,,. Form<n,

2n+2 (6)

n
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Hence, (z,)n>1 is a Cauchy sequence, and z, — z for some z € X. We note
that

n [e’e]
: . 1 1
ol = Jim Nzl < Jin 3 ol < 3 57 = 3

so that # € Bi*. Now continuity of 7" and equation (6) imply that T'(z) = y.
Thus, we have proved that B}, C T(Bf) verifying (1).

Now we complete the proof of the theorem using (1). Let U C X be open.
We want to show that T'(U) is also open. So take y € T(U). Then y = Tz
with x € U. Since U is open, there exists ¢ > 0 such that BX +z C U By
(1) and linearity of T, we obtain BY C T(BX), and

BY +y Cc T(BX +x) c T(U).
This shows that T'(U) is open, as required. ]
We deduce the following corollary

Corollary 10.4. Let T : X — Y be a continuous (bounded) linear bijection
between Banach spaces X and Y. Then T~ is continuous (bounded,).

This implies the following surprising consequence:

Corollary 10.5. Let ||-||; and ||-||2 be norms on a vector space X such that
(X, || ln) and (X, || - ||2) are complete. Then if

|-lla<cl|l-|li for somec >0,

then also
|-l < -l for somed >0,

Indeed, then the identity map (X, |- ||1) = (X, ] - ||2) is bounded, and it
follows from Corollary 10.4 that its inverse is also bounded.

10.2 Closed linear operators

So far we have mostly discussed bounded linear operator. Many of the impor-
tant classes of operators (for instance, differential operators) are unbounded.
We introduce the so-called closed operators.

Definition 10.6 (closed linear operator). Let X,Y be normed spaces, Z a
subspace of X, and T : 2 — Y a linear operator. The operator T is closed
if its graph

NT)={(z,Tz) e X XY : z € P}
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is closed in the normed space X x Y.
This means that for every sequence x, € % such that z, — x and
Tx, — y, we have x € & and Tx = y.

Example 10.7. Let X = C|0, 1] be the space of continuous functions equipped
with max-norm. We consider the derivative operator D : ¥ — X be defined
by D(z)(t) = 2/(t) for z € 2 = C'[0,1] in the space of continuously differ-
entiable functions.

The operator D is an unbounded operator. Indeed, let z,(t) = ¢, for
n > 1. Then ||z|| = 1. Also, D(z,) = z/,(t) = nt"!, and we can see that
|D(z,)|| = n. Therefore, |D|| > n for any n > 1, so D is an unbounded
operator.

We show that D is a closed operator. Let x,, € Z be a sequence converging
to x € C]0,1], and such that z/, — y € C]0,1]. Since the convergence is
uniform, we obtain

/0 y(r)dr = /o Tim. z (1) dr = Tim. i z (1) dr = T}Lr&(xn(t) — 2,(0))
= x(t) — z(0).

This shows that z(t) = z(0) + f(f y(7) dr. Therefore, z € C'[0,1], and 2/ = y.
We conclude that D is a closed linear operator.

Another source of examples of closed operators is Hilbert-adjoint opera-
tors:

Definition (Hilbert adjoints). Let X be a Hilbert space. Let T : 2 — X
be a linear operator defined on a dense subspace & of X is dense. Then the
Hilbert-adjoint operator of T is the operator T* : * — X with

7" ={y €Y : Jy" € X such that (Tx,y) = (z,y") for all x € P}
defined by T*(y) = y*.
We note that the Hilbert-adjoint operator satisfies
(Tr,yy = (z, T*y) forallz € Z and y € Z*.
Theorem 10.8. Hilbert-adjoint operators are closed.

Proof. Suppose y,, € Z* converges to y € X, and T*y, converges to z € X.
Since y,, € 2%, we know that for any z € 2, (T'z,y,) = (x,T*y,). Passing to
the limit, we obtain (T'z,y) = (x, z). This means that y € Z* and T*y = 2.
Hence, T* is closed. [



10.3 The Closed Graph Theorem

The following theorem treats the question of when a bounded operator is
closed.

Theorem 10.9. Let X andY be normed spaces. Let T : & — Y be a bounded
linear operator defined on a subspace & of X.

1. If @ is closed in X, then T is closed.
2. If T is closed and Y 1is complete, then & is closed in X.

Proof. Suppose x,, € & converges to x € X and Tz, — y € Y. Since we
have assumed that & is closed, we must have x € Z. Since T is bounded, it
is continuous, and therefore y = T'x. This proves that T is closed.
Suppose that 7 is closed and Y is complete. Let € 2 and z,, € 2 such
T, — x. Since
| T, — Tyl < [T [|2m — 20|,

it follows that T'z,, is a Cauchy sequence. Therefore, T'x,, — y for somey € Y.
Since T is closed, we conclude that x € . Hence, Z is closed. n

The following theorem gives a condition for when a closed linear operator
is bounded.

Theorem 10.10 (Closed Graph Theorem). Let X,Y be Banach spaces and
T :92 —Y a closed linear operator defined on a closed subspace 9 C X.
Then T s bounded.

To appreciate the Closed Graph Theorem, we observe that to check that
amap T : X — Y is continuous, one normally need to show that

T, — 2 = Tx,—y and Tx=y.

In the setting of the Closed Graph Theorem, continuity follows once we show
that
T, =2 and T2, -y = Tzr=uy.

We easily obtain the following corollary.

Corollary 10.11. Let T : H — H be an linear operator on a Hilbert space
H such that (Tx,y) = (x,Ty) for all x,y € H. Then T is bounded.

Indeed, the operator T is closed by Theorem 10.8.



Proof of Theorem 10.10. We first note that the space X x Y equipped with
|(z, )|l = ||lz|| + |ly|| is complete (exercise). Since the graph I'(T) is closed
in X x Y, it is a Banach space. Since the domain & is closed, it is also a
Banach space.

We consider the map

P:INT)—=2: (zv,Tx) — x.
Clearly, P is linear and a bijection. We have P~z = (x,Tz). Since
[Pz, Tx)|| = llzll < llzll + 1Tz = |[(z, T2)],

it is also bounded. By the Open Mapping Theorem, the inverse P~! is
bounded, meaning that there is an C' > 0 such that for any x € Z,

1P~ ]| = [l + |Tz]| < C'l=].

Hence, T' is bounded. [
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