5 Compact linear operators

One of the most important results of Linear Algebra is that for every self-
adjoint linear map A on a finite-dimensional space, there exists a basis
consisting of eigenvectors. In particular, with respect to this basis the oper-
ator A can be represented by a diagonal matrix. The situation turns out to
be much more complicated for operators on infinite dimensional spaces (in
fact, self-adjoint operators may have no eigenvectors at all). Nonetheless, a
satisfactory theory can be developed for so-called compact operators which
we now introduce.

Definition 5.1 (Compact linear operator). A linear operator T : X — Y
between normed spaces X and Y s called a compact linear operator
if for every bounded sequence (zyn)p>1 in X, the sequence (T'xy)n>1 has a
convergent subsequence.

We note that every compact operator 7' is bounded. Indeed, if ||T'|| = oo,
then there exists a sequence (z,)n>1 such that ||z,| < 1 and [|Tz,| — oo.
Then (T'zy)n>1 cannot have a convergent subsequence. Hence, ||T|| < oo.

Example. 1. Consider the linear operator T : 2 — ¢? defined by
Tnz = (z1,22,...,2n,0,0,...). We claim that T is compact. Given
any bounded sequence (ZE(n))nzl in ¢2, the sequence (TNJU("))nzl is
bounded in FYN C ¢2. Since every bounded sequence in R™ or CV has
a convergent subsequence, it follows that T is compact.

2. The identity operator I : ¢> — ¢? is not compact. To prove this,
consider the bounded sequence (e, )n>1 where e, = (0,...,0,1,0,...).
Then for any n # m, ||Ie, — Iem|l2 = |len — eml|l2 = v/2. This implies
that any subsequence of (Ie;,),>1 cannot be Cauchy and, hence, cannot
converge. So that I is not compact.

3. (integral operators) Let K € C([0,1]?) and T : L?([0,1]) — L([0,1])
is defined by T'f(x) = fol K(z,y)f(y)dy. Then the operator T is com-
pact. We will not prove this in class, and it could be a possible topic
for a level-M presentation.

We show that limits of compact operators is also compact.

Theorem 5.2. Let (T},)n>1 be a sequence of compact linear operators from a
normed space X into a Banach spaces Y . If T, — T (that is, ||T,,—T| — 0),
then the limit operator T is compact.

Proof. Since T3 is a compact operator, we know that the sequence (T} (zy))
has a convergent (hence Cauchy) subsequence (T(21,,)), where (z1,,) is
a subsequence of the original sequence (x,). The subsequence (z1,,) is
bounded, so we can repeat the argument with 75 to produce a subsequence



(x2,m) of (x1,,) with the property that (T5(x2,,)) converges. We continue
in the same way, and then define a sequence (Y,) = (Zm,m). Notice that
(ym) is a subsequence of (x,), so it is bounded, say by ||y,|| < ¢, and it has
the property that for every fixed n, the sequence (7}, (ym,)) is convergent,
and hence Cauchy.

We claim that (T'(yn,)) is a Cauchy sequence in Y. Let € > 0. Since
|7, — T|| — 0, there is some p € N such that ||T, — T'|| < 5. Also, since
(Tp(ym)) is Cauchy, there is some N > 0 such that [|T(y;) — Tp(yr)l| < §
whenever j, k > N. Therefore, for j, k > N, we have

1T (ys) = Tyl < 1T(y5) = Tp(ys) + Tp(ys) — Tp(yr) + Tpyr) = Ty
< N7 Cyz) = Tp(up) | + 1T (yz) = Tp(yi)ll + [ Tpyr) — T (yn)|

<IT = Tyl lysll + 5 + 17 = Toll ]
€ € €
< 30 c+ 3 + 30 c=c¢,
which proves that (7'(ym,)) is Cauchy. Since Y is a Banach space, it is
by definition complete, so (T'(y,,)) converges. We have thus produced, for
an arbitrary bounded sequence (z,) C X, a convergent subsequence of its
image under T'. Therefore, T is compact. O

Example. Let T : /> — (2 be an operator defined by Tz = (A2, )n>1 for
a sequence A\, — 0. We claim that T" is compact. To show this, we approxi-
mate T' by compact operators Ty such that Tz = (A1x1,..., AnvzN,0,...).
As in the previous example we observe that T is a compact operator. For
x € 12,

1/2 1/2
| Tva — Tz||s = (Z |)\nxn|2> < (sug)\n|> <Z |g;n|2>
n>

n>N n>N

< (sup rm) Il
n>N

This shows that ||Ty — T'|| < sup,~x |An|. Since A, — 0, it follows that
|Tn — T'|| — 0. Hence, T' is compact by the previous theorem.

We note that for the operator T in the previous example there exists a
basis of eigenvectors e,, with eigenvalues \,,. Remarkably, every self-adjoint
compact operator on a Hilbert space is of this form: it can be diagonalised
with respect to suitable orthonormal set. The following is the main result
of this lecture:

Theorem 5.3 (spectral theorem). Let H be a Hilbert space and T : H —
H a compact self-adjoint operator. Then there exists an orthonormal set



(en)n>1 consisting of eigenvectors of T with eigenvalues A, such that

[o¢]
Ty = Z/\n (x,en)en, =€ H.

n=1
The proof of this theorem require several auxilary results.

Theorem 5.4. Let T be a self-adjoint operator on a Hilbert space H. Then
1T = sup{[ (T2, ) | : [lx]| = 1}.
Proof. Let m = sup{| (T'z,z) | : ||z|| = 1}. For x € H with ||z| = 1,
[Tz, )| < | T2l < |T)[l]* = [Tl

This shows that m < ||T|.
For any z,y € H,

Re (Tw,y) = {(T(x +y),7 +y) — Tz —y),7— ).

This formula can be checked by expanding the right hand side. We use that
| (Tu,u) | < mllul|? for all w € H. Then from the above formula, we obtain

Re(Tz,5) < 7T + 3,2 +9)| + (T — y),7 — )]

1 m

< qOmllz+yl* +mllz —yl*) = 5 (=] + ly]),

where we used the parallelogram identity. Replacing x by Az where |\| =1
and X is chosen so that A (Tx,y) = | (T'z,y) | is real and non-negative, we

obtain

(T, y) | < o (I2l” + lly]®).

m
2
Suppose that || Tz| # 0 and take y = HxHHC:%H This gives ||z||||Tz| <

m||z||?. Hence, | Tz|| < m|z||. This inequality also obviously holds when
Tz = 0. We conclude that ||T|| < m. O

Theorem 5.5. Let T be a compact self-adjoint operator on a Hilbert space
H. Then either |T|| or —||T|| is an eigenvalue.

Proof. We assume that that T # 0.

By the previous theorem there exists x, € H with ||x,|| = 1 such that
| (Txp,xn) | — ||T||. Since T* = T, (Txn,xn) = (xn,Txy) = (Tan, ),
so that (Tx,,x,) is real. Passing to subsequence we may assume that
(Txy,xn) — X where A = ||T'|| or A = —||T'||. Then

| Tz — Axp||? = [|Tznl|? = 20 (T, 2) + N2 |20 ||? < 202 =2\ (T, ) — 0.



This shows that Tz, — Ax,, — 0. Since T' is compact, passing to a subse-
quence we may assume that Tx, — y for some y € H. Tnen it follows that
Az, — y. Since T is continuous, ATz, — Ty, but AXT'z,, — Ay. Hence, we
conclude that Ty = Ay.

We claim that y # 0. Indeed, by the triangle inequality,

[Tzl Z [|Azn]l = | T2n — Aznll = [N = [[T2n — Azn|| = A = [|T]| > 0.

Hence, ||y|| = lim ||Tx,|| > 0. We have proved that X is an eigenvalue of
T. 0

Theorem 5.6. Let T be a compact self-adjoint operator on a Hilbert space
H and A\, ’s are eigenvalues of T with linearly independent eigenvectors ., .
Then A\, ’s are real, and for every ¢ > 0 there are only finitely many n’s such
that |\,| > c.

Proof. We have
Mallzall? = (T, 2n) = (20, Twn) = Aalza .

Since z,, # 0, it follows that A\, = A, and ), is real.
Suppose that A, # Ap,. Then

)\n <xna$m> = <T$namm> = <$naTxm> = )\m <$namm> .

This implies that (x,,x,,) = 0, that is x,, and z,, are orthogonal. If \,’s
are repeating, then consider Ny = {n : A\, = A}. We note that linear
combinations of x,’s with n € N are also eigenvectors with eigenvalue
A. Using the Gram-Schmidt orthogonalisation algorithm, we can construct
orthonormal eigenvectors for A\, with n € N,.

Now we can assume that z,’s are orthonormal. Suppose that for in-
finitely many n’s |A,| > ¢. Then for such indices n # m,

Tz, — TﬂBmH2 = || Anxn — Amxm\|2 = |)\n|2 + \)\m|2 > 202

This gives a sequence of the form (T'x,) which does not contain any Cauchy
subsequence. This contradicts compactness of the operator T'. ]

We note that Theorem 5.6 implies that if we order the eigenvalues of T’
as [A1| > || > -+, then |\,| — 0.

Theorem 5.7. Let T be a self-adjoint operator on a Hilbert space H, and
U is a closed subspace of H such that T(U) C U. Then T(U+) C U*.

Proof. Let x € U*. Then forany y € U, Ty € U, and (T'z,y) = (x,Ty) = 0.
Hence, Tz € U™. ]

Now we are ready for the proof of the main Theorem 5.3. The idea is to
apply Theorem 5.5 inductively.



Proof of Theorem 5.3. By Theorem 5.5, there exists an eigenvector e; with
eigenvalue \; = £||T||. Note that if Tx = Az with x € 0, then ||Tz| =
Alllz|l < |IT]|||z]|, so that |A] < ||T'|]|. Hence, |A1]| is maximal among
eigenvalues. After rescaling we can assume that |e;|| = 1. The sub-
space U; = span(e;) is closed and T-invariant. By Theorem 5.7, Ui is
also T-invariant. Now we can apply the same construction to the operator
Ty : Ui — Ui, which is the restriction of the operator T to Uy, to construct
a unit eigenvector es € Ui~ with eigenvalue Ay such that |Ay| = ||T3||. Since
| T3]l < ||T||, we have [A2| < |A1]. Next, we consider T3 : Us- — Us- where
Us = (e1,e2), and so on ...

After n steps we produce an orthonormal set {ej,... e,} consisting of
eigenvectors with eigenvalues A1, ..., A, such that [A;| > -+ > |\,|. Setting
U, = (e1,... e,), we have the orthogonal decomposition H = U,, ® U,
For a vector © € H, we set y, = = — » ., (x,e;)e;. Since e;’s are or-
thonormal, it is easy to check that y, € U,-. Hence, we have the or-
thogonal sum = = ) ' | (z,€;) €; + yn, and by the Pythagoras’ theorem,
|| = >0 | (z,e:) > + ||lynl/?. In particular, |ly,|| < ||z||. We observe that

T (x — Z (x,e;) ei> H

i=1

<

Tx — Z)‘i (x,e;)e;
i=1

= |Trwr1ynll < [1Torallllynll < [Angalllz]].

Since by Theorem 5.6, |\,+1| — 0, this proves that the operator 7' can be
represented as Tx = > 2, \; (z,€;) e;, v € H. O



