
5 Compact linear operators

One of the most important results of Linear Algebra is that for every self-
adjoint linear map A on a finite-dimensional space, there exists a basis
consisting of eigenvectors. In particular, with respect to this basis the oper-
ator A can be represented by a diagonal matrix. The situation turns out to
be much more complicated for operators on infinite dimensional spaces (in
fact, self-adjoint operators may have no eigenvectors at all). Nonetheless, a
satisfactory theory can be developed for so-called compact operators which
we now introduce.

Definition 5.1 (Compact linear operator). A linear operator T : X → Y
between normed spaces X and Y is called a compact linear operator
if for every bounded sequence (xn)n≥1 in X, the sequence (Txn)n≥1 has a
convergent subsequence.

We note that every compact operator T is bounded. Indeed, if ‖T‖ =∞,
then there exists a sequence (xn)n≥1 such that ‖xn‖ ≤ 1 and ‖Txn‖ → ∞.
Then (Txn)n≥1 cannot have a convergent subsequence. Hence, ‖T‖ <∞.

Example. 1. Consider the linear operator TN : `2 → `2 defined by
TNx = (x1, x2, . . . , xN , 0, 0, . . . ). We claim that TN is compact. Given
any bounded sequence (x(n))n≥1 in `2, the sequence (TNx

(n))n≥1 is
bounded in FN ⊂ `2. Since every bounded sequence in RN or CN has
a convergent subsequence, it follows that TN is compact.

2. The identity operator I : `2 → `2 is not compact. To prove this,
consider the bounded sequence (en)n≥1 where en = (0, . . . , 0, 1, 0, . . .).
Then for any n 6= m, ‖Ien − Iem‖2 = ‖en − em‖2 =

√
2. This implies

that any subsequence of (Ien)n≥1 cannot be Cauchy and, hence, cannot
converge. So that I is not compact.

3. (integral operators) Let K ∈ C([0, 1]2) and T : L2([0, 1]) → L2([0, 1])
is defined by Tf(x) =

∫ 1
0 K(x, y)f(y)dy. Then the operator T is com-

pact. We will not prove this in class, and it could be a possible topic
for a level-M presentation.

We show that limits of compact operators is also compact.

Theorem 5.2. Let (Tn)n≥1 be a sequence of compact linear operators from a
normed space X into a Banach spaces Y . If Tn → T (that is, ‖Tn−T‖ → 0),
then the limit operator T is compact.

Proof. Since T1 is a compact operator, we know that the sequence (T1(xn))
has a convergent (hence Cauchy) subsequence (T1(x1,m)), where (x1,m) is
a subsequence of the original sequence (xn). The subsequence (x1,m) is
bounded, so we can repeat the argument with T2 to produce a subsequence
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(x2,m) of (x1,m) with the property that (T2(x2,m)) converges. We continue
in the same way, and then define a sequence (ym) = (xm,m). Notice that
(ym) is a subsequence of (xn), so it is bounded, say by ‖yn‖ ≤ c, and it has
the property that for every fixed n, the sequence (Tn(ym)) is convergent,
and hence Cauchy.

We claim that (T (ym)) is a Cauchy sequence in Y . Let ε > 0. Since
‖Tn − T‖ → 0, there is some p ∈ N such that ‖Tp − T‖ < ε

3c . Also, since
(Tp(ym)) is Cauchy, there is some N > 0 such that ‖Tp(yj) − Tp(yk)‖ < ε

3
whenever j, k > N . Therefore, for j, k > N , we have

‖T (yj)− T (yk)‖ ≤ ‖T (yj)− Tp(yj) + Tp(yj)− Tp(yk) + Tp(yk)− T (yk)‖
≤ ‖T (yj)− Tp(yj)‖+ ‖Tp(yj)− Tp(yk)‖+ ‖Tp(yk)− T (yk)‖

< ‖T − Tp‖ ‖yj‖+
ε

3
+ ‖T − Tp‖ ‖yk‖

<
ε

3c
c+

ε

3
+

ε

3c
c = ε,

which proves that (T (ym)) is Cauchy. Since Y is a Banach space, it is
by definition complete, so (T (ym)) converges. We have thus produced, for
an arbitrary bounded sequence (xn) ⊂ X, a convergent subsequence of its
image under T . Therefore, T is compact.

Example. Let T : `2 → `2 be an operator defined by Tx = (λnxn)n≥1 for
a sequence λn → 0. We claim that T is compact. To show this, we approxi-
mate T by compact operators TN such that TNx = (λ1x1, . . . , λNxN , 0, . . .).
As in the previous example we observe that TN is a compact operator. For
x ∈ `2,

‖TNx− Tx‖2 =

(∑
n>N

|λnxn|2
)1/2

≤
(

sup
n>N
|λn|

)(∑
n>N

|xn|2
)1/2

≤
(

sup
n>N
|λn|

)
‖x‖2.

This shows that ‖TN − T‖ ≤ supn>N |λn|. Since λn → 0, it follows that
‖TN − T‖ → 0. Hence, T is compact by the previous theorem.

We note that for the operator T in the previous example there exists a
basis of eigenvectors en with eigenvalues λn. Remarkably, every self-adjoint
compact operator on a Hilbert space is of this form: it can be diagonalised
with respect to suitable orthonormal set. The following is the main result
of this lecture:

Theorem 5.3 (spectral theorem). Let H be a Hilbert space and T : H →
H a compact self-adjoint operator. Then there exists an orthonormal set
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(en)n≥1 consisting of eigenvectors of T with eigenvalues λn such that

Tx =

∞∑
n=1

λn 〈x, en〉 en, x ∈ H.

The proof of this theorem require several auxilary results.

Theorem 5.4. Let T be a self-adjoint operator on a Hilbert space H. Then

‖T‖ = sup{| 〈Tx, x〉 | : ‖x‖ = 1}.

Proof. Let m = sup{| 〈Tx, x〉 | : ‖x‖ = 1}. For x ∈ H with ‖x‖ = 1,

| 〈Tx, x〉 | ≤ ‖Tx‖‖x‖ ≤ ‖T‖‖x‖2 = ‖T‖.

This shows that m ≤ ‖T‖.
For any x, y ∈ H,

Re 〈Tx, y〉 =
1

4
(〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉).

This formula can be checked by expanding the right hand side. We use that
| 〈Tu, u〉 | ≤ m‖u‖2 for all u ∈ H. Then from the above formula, we obtain

Re 〈Tx, y〉 ≤ 1

4
(| 〈T (x+ y, x+ y〉 |+ | 〈T (x− y), x− y〉 |)

≤ 1

4
(m‖x+ y‖2 +m‖x− y‖2) =

m

2
(‖x‖2 + ‖y‖2),

where we used the parallelogram identity. Replacing x by λx where |λ| = 1
and λ is chosen so that λ 〈Tx, y〉 = | 〈Tx, y〉 | is real and non-negative, we
obtain

| 〈Tx, y〉 | ≤ m

2
(‖x‖2 + ‖y‖2).

Suppose that ‖Tx‖ 6= 0 and take y = ‖x‖ Tx
‖Tx‖ . This gives ‖x‖‖Tx‖ ≤

m‖x‖2. Hence, ‖Tx‖ ≤ m‖x‖. This inequality also obviously holds when
Tx = 0. We conclude that ‖T‖ ≤ m.

Theorem 5.5. Let T be a compact self-adjoint operator on a Hilbert space
H. Then either ‖T‖ or −‖T‖ is an eigenvalue.

Proof. We assume that that T 6= 0.
By the previous theorem there exists xn ∈ H with ‖xn‖ = 1 such that

| 〈Txn, xn〉 | → ‖T‖. Since T ∗ = T , 〈Txn, xn〉 = 〈xn, Txn〉 = 〈Txn, xn〉,
so that 〈Txn, xn〉 is real. Passing to subsequence we may assume that
〈Txn, xn〉 → λ where λ = ‖T‖ or λ = −‖T‖. Then

‖Txn−λxn‖2 = ‖Txn‖2−2λ 〈Txn, xn〉+λ2‖xn‖2 ≤ 2λ2−2λ 〈Txn, xn〉 → 0.
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This shows that Txn − λxn → 0. Since T is compact, passing to a subse-
quence we may assume that Txn → y for some y ∈ H. Tnen it follows that
λxn → y. Since T is continuous, λTxn → Ty, but λTxn → λy. Hence, we
conclude that Ty = λy.

We claim that y 6= 0. Indeed, by the triangle inequality,

‖Txn‖ ≥ ‖λxn‖ − ‖Txn − λxn‖ = |λ| − ‖Txn − λxn‖ → |λ| = ‖T‖ > 0.

Hence, ‖y‖ = lim ‖Txn‖ > 0. We have proved that λ is an eigenvalue of
T .

Theorem 5.6. Let T be a compact self-adjoint operator on a Hilbert space
H and λn’s are eigenvalues of T with linearly independent eigenvectors xn.
Then λn’s are real, and for every c > 0 there are only finitely many n’s such
that |λn| ≥ c.

Proof. We have

λn‖xn‖2 = 〈Txn, xn〉 = 〈xn, Txn〉 = λ̄n‖xn‖2.

Since xn 6= 0, it follows that λn = λ̄n and λn is real.
Suppose that λn 6= λm. Then

λn 〈xn, xm〉 = 〈Txn, xm〉 = 〈xn, Txm〉 = λm 〈xn, xm〉 .

This implies that 〈xn, xm〉 = 0, that is xn and xm are orthogonal. If λn’s
are repeating, then consider Nλ = {n : λn = λ}. We note that linear
combinations of xn’s with n ∈ Nλ are also eigenvectors with eigenvalue
λ. Using the Gram-Schmidt orthogonalisation algorithm, we can construct
orthonormal eigenvectors for λn with n ∈ Nλ.

Now we can assume that xn’s are orthonormal. Suppose that for in-
finitely many n’s |λn| ≥ c. Then for such indices n 6= m,

‖Txn − Txm‖2 = ‖λnxn − λmxm‖2 = |λn|2 + |λm|2 ≥ 2c2.

This gives a sequence of the form (Txn) which does not contain any Cauchy
subsequence. This contradicts compactness of the operator T .

We note that Theorem 5.6 implies that if we order the eigenvalues of T
as |λ1| ≥ |λ2| ≥ · · · , then |λn| → 0.

Theorem 5.7. Let T be a self-adjoint operator on a Hilbert space H, and
U is a closed subspace of H such that T (U) ⊂ U . Then T (U⊥) ⊂ U⊥.

Proof. Let x ∈ U⊥. Then for any y ∈ U , Ty ∈ U , and 〈Tx, y〉 = 〈x, Ty〉 = 0.
Hence, Tx ∈ U⊥.

Now we are ready for the proof of the main Theorem 5.3. The idea is to
apply Theorem 5.5 inductively.
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Proof of Theorem 5.3. By Theorem 5.5, there exists an eigenvector e1 with
eigenvalue λ1 = ±‖T‖. Note that if Tx = λx with x ∈ 0, then ‖Tx‖ =
|λ|‖x‖ ≤ ‖T‖‖x‖, so that |λ| ≤ ‖T‖. Hence, |λ1| is maximal among
eigenvalues. After rescaling we can assume that ‖e1‖ = 1. The sub-
space U1 = span(e1) is closed and T -invariant. By Theorem 5.7, U⊥1 is
also T -invariant. Now we can apply the same construction to the operator
T2 : U⊥1 → U⊥1 , which is the restriction of the operator T to U⊥1 , to construct
a unit eigenvector e2 ∈ U⊥1 with eigenvalue λ2 such that |λ2| = ‖T2‖. Since
‖T2‖ ≤ ‖T‖, we have |λ2| ≤ |λ1|. Next, we consider T3 : U⊥2 → U⊥2 where
U2 = 〈e1, e2〉, and so on . . .

After n steps we produce an orthonormal set {e1, . . . en} consisting of
eigenvectors with eigenvalues λ1, . . . , λn such that |λ1| ≥ · · · ≥ |λn|. Setting
Un = 〈e1, . . . en〉, we have the orthogonal decomposition H = Un ⊕ U⊥n .
For a vector x ∈ H, we set yn = x −

∑n
i=1 〈x, ei〉 ei. Since ei’s are or-

thonormal, it is easy to check that yn ∈ U⊥n . Hence, we have the or-
thogonal sum x =

∑n
i=1 〈x, ei〉 ei + yn, and by the Pythagoras’ theorem,

‖x‖2 =
∑n

i=1 | 〈x, ei〉 |2 + ‖yn‖2. In particular, ‖yn‖ ≤ ‖x‖. We observe that∥∥∥∥∥Tx−
n∑
i=1

λi 〈x, ei〉 ei

∥∥∥∥∥ ≤
∥∥∥∥∥T
(
x−

n∑
i=1

〈x, ei〉 ei

)∥∥∥∥∥
= ‖Tn+1yn‖ ≤ ‖Tn+1‖‖yn‖ ≤ |λn+1|‖x‖.

Since by Theorem 5.6, |λn+1| → 0, this proves that the operator T can be
represented as Tx =

∑∞
i=1 λi 〈x, ei〉 ei, x ∈ H.
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