7 Spectrum of linear operators

The concept of eigenvalues of matrices play fundamental role in linear al-
gebra and is a starting point in finding canonical forms of matrices and
developing functional calculus. As we saw similar theory can be developed
on infinite-dimensional spaces for compact operators. However, the situation
is rather more involved for general operators on infinite-dimensional spaces.
In particular, many important exampples of operators have no eigenvalues
at all. What is an analogue of eigenvalues for general normed spaces?

Definition 7.1. Let A : X — X be a bounded linear operator on a normed
complex space X. The spectrum o(A) of A is the set of A € C such that the
operator A — A\ is not invertible.

In the finite-dimensional spaces, o(A) simply consists of the eigenvalues
of A, but this notion is much richer in general In particular, one can show
that o(A) is always non-empty.

Theorem 7.2. The spectrum o(A) of any bounded linear operator A is a
closed subset of contained in {\: |\ < ||A]|}.

Proof. Define the map F': C — B(X) by F(\) = A— XI. We have ||F(\) —
F(p)|| = |A — pl, so that F is continuous. We have o(4) = F~1(B(X)\G)
where G denotes the set of invertible operators. Since GG is open, we deduce
that B(X)\G and o(A) are closed.

Suppose that |A| > ||A||. Then |[A\"1A|| < 1, and it follows that I — A"t A
is invertible. Hence, A — A\l = —A(I — A1 A) is also invertible. This show
that \ ¢ o(A). O

Example 7.3. 1. Let X = C([a,b]), ¢ € X, and Ay : X — X be the
multiplication operator: Ay(f) = ¢f. It is easy to check that if ¢ is
monotone, A, has no eigenvalues. We claim that

o(Ag) = ¢([a,b]).

Indeed, let X € ¢([a,b]). If B is the inverse of Ay — AI, then (Ag —
M)B =1, and for every f € X, (¢ — N\)B(f) = f. Take ty € [a, b] such
that ¢(top) = A. Then f(to) = 0, but this cannot hold for for all f € X.
On the other hand, if A ¢ ¢([a,b]), then (¢ — A\)~! is continuous on
[a,b], and A(4_y)-1 defines the inverse of Ay — A = Ay ».

2. Let X =¢*>and S : (x1,22,...,) = (0,71, 22,...) be the shift operator
on X. We claim that that S has no eigenvalues. Indeed, if Sz = Az,
then Az1 = 0 and Ax; —x;_1 = 0 for all i« > 1. For here we deduce that
x = 0, so that S has no eigenvectors. Next we show that

o(5) ={IAl <1}



Since ||S|| = 1, it is clear that o(S) is contained in this set. To prove
the opposite inclusion, we show that if |[A\| < 1, then S — AT is not onto.
When X = 0, is easy to check that y = (1,0,...) not in the image of
S — AI. Now let A £ 0. We suppose that there exists € X such that
(S — M)z =y. Then —Azq = 1 and z;—1 — Az; = 0. We deduce that
x; = —1/\'. However, since |A| > 1, this x is not in ¢2. Hence, S — \I
is not onto as claimed.

Theorem 7.4. If A: H — H is a self-adjoint operator on a Hilbert space
H. Then o(H) C R.

Proof. Take A = a + ib with b # 0. We note that since A is self-adjont
(Az,x) € R. Then

[{(A=ADz,2)| = |((Az, ) — all||*) — ibl|z][?| > [bl]|]*.
Since | (A — M)z, z) | < [[(A— A])z||||z|, we deduce that
|(A—=XD)z| > |b]||x| forallz e H. (1)

In particular, A — Al is one-to-one.

We also claim that the image of A — A\ is closed. Let (A — X))z, — y
for some y € H. In particular, the sequence (A — \I)z,, is Cauchy. It follows
from (1) that the sequence x,, is also Cauchy. Hence, z,, — x for some = € H.
Then by continuity, Az, — Az, so that y = (A — M)z, and the image of
A — M is closed.

The same argument as above shows that

ker(A — AI) = ker((A — A\I)*) = 0.

We will use that for every operator T, ker(T*) = im(T)* (you can check
this as an exercise). Since im(A — \I) is closed,

H =im(A — X)) @im(A — A\)* = im(A — \I).

Hence, A — A is onto.

We have shown that A — A\ is a bijection, so that the linear map (A4 —
AI)~!is well defined. Moreover, it follows from (1) that it is bounded. This
proves that A\ ¢ o(A). O

[NON-EXAMINABLE]

The spectral theory of linear operators plays central role in modern math-
ematics. In this course we are only able touch on it briefly. In conclusion we
mention (without proof) that this theory can be used to prove that every
bounded self-adjoint operator has a “canonical form” given by a multiplica-
tion operator.



Theorem 7.5 (spectral theorem for self-adjoint operators). Let H be a
complex Hilbert space and A : H — H a bounded self-adjoint operator. Then
there exist a measure space (2, 1) and an isomorphism U : L*(Q) — H of
Hilbert spaces such that

A= UA¢U_1,

where Ay is a multiplication operator Ay : f — ¢f on L*(2) for a bounded
measurable function ¢ on Q.

This is a far-reaching generalisation of the fact every self-adjoint matrix
can be diagonalized.



